Cargando…
Natural Language Processing and Machine Learning Methods to Characterize Unstructured Patient-Reported Outcomes: Validation Study
BACKGROUND: Assessing patient-reported outcomes (PROs) through interviews or conversations during clinical encounters provides insightful information about survivorship. OBJECTIVE: This study aims to test the validity of natural language processing (NLP) and machine learning (ML) algorithms in ident...
Autores principales: | Lu, Zhaohua, Sim, Jin-ah, Wang, Jade X, Forrest, Christopher B, Krull, Kevin R, Srivastava, Deokumar, Hudson, Melissa M, Robison, Leslie L, Baker, Justin N, Huang, I-Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600437/ https://www.ncbi.nlm.nih.gov/pubmed/34730546 http://dx.doi.org/10.2196/26777 |
Ejemplares similares
-
Natural language processing-driven state machines to extract social factors from unstructured clinical documentation
por: Allen, Katie S, et al.
Publicado: (2023) -
Ten Considerations for Integrating Patient-Reported Outcomes into Clinical Care for Childhood Cancer Survivors
por: Horan, Madeline R., et al.
Publicado: (2023) -
Patient-reported outcomes in paediatric cancer survivorship: a qualitative study to elicit the content from cancer survivors and caregivers
por: Pierzynski, Jeanne A, et al.
Publicado: (2020) -
Identification of Prediabetes Discussions in Unstructured Clinical Documentation: Validation of a Natural Language Processing Algorithm
por: Schwartz, Jessica L, et al.
Publicado: (2022) -
Insomnia and Neurocognitive Functioning in Adult Survivors of Childhood Cancer
por: Tonning Olsson, Ingrid, et al.
Publicado: (2020)