Cargando…
Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
BACKGROUND: The rapid development of artificial intelligence technology has improved the capability of automatic breast cancer diagnosis, compared to traditional machine learning methods. Convolutional Neural Network (CNN) can automatically select high efficiency features, which helps to improve the...
Autores principales: | Ma, He, Tian, Ronghui, Li, Hong, Sun, Hang, Lu, Guoxiu, Liu, Ruibo, Wang, Zhiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600702/ https://www.ncbi.nlm.nih.gov/pubmed/34794443 http://dx.doi.org/10.1186/s12938-021-00950-z |
Ejemplares similares
-
A Convolutional Neural Network Based on Ultrasound Images of Primary Breast Masses: Prediction of Lymph-Node Metastasis in Collaboration With Classification of Benign and Malignant Tumors
por: Li, Chunxiao, et al.
Publicado: (2022) -
Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network
por: Byra, Michal, et al.
Publicado: (2020) -
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023) -
Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images
por: Wang, Huiquan, et al.
Publicado: (2021) -
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
por: Lv, Enhui, et al.
Publicado: (2021)