Cargando…

Multiomics uncovers developing immunological lineages in human [Image: see text]

The development of the human immune system during embryonic and fetal life has historically been difficult to research due to limited access to human tissue. Experimental animal models have been widely used to study development but cellular and molecular programmes may not be conserved across specie...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephenson, Emily, Webb, Simone, Haniffa, Muzlifah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600952/
https://www.ncbi.nlm.nih.gov/pubmed/33569778
http://dx.doi.org/10.1002/eji.202048769
Descripción
Sumario:The development of the human immune system during embryonic and fetal life has historically been difficult to research due to limited access to human tissue. Experimental animal models have been widely used to study development but cellular and molecular programmes may not be conserved across species. The advent of multiomic single‐cell technologies and an increase in human developmental tissue biobank resources have facilitated single‐cell multiomic studies focused on human immune development. A critical question in the near future is "How do we best reconcile scientific findings across multiple omic modalities, developmental time, and organismic space?" In this review, we discuss the application of single‐cell multiomic technologies to unravel the major cellular lineages in the prenatal human immune system. We also identify key areas where the combined power of multiomics technologies can be leveraged to address specific immunological gaps in our current knowledge and explore new research horizons in human development.