Cargando…

A high sensitivity LC-MS/MS method for measurement of 3-methoxytyramine in plasma and associations between 3-methoxytyramine, metanephrines, and dopamine

INTRODUCTION: Diagnosis of pheochromocytoma and paraganglioma (PPGL) is aided by the measurement of metanephrine (MN) and normetanephrine (NMN). Research suggests that 3-methoxytyramine (3MT), a dopamine (DA) metabolite, may serve as a biomarker of metastasis in patients with paraganglioma. Consider...

Descripción completa

Detalles Bibliográficos
Autores principales: Smy, Laura, Kushnir, Mark M., Frank, Elizabeth L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601001/
https://www.ncbi.nlm.nih.gov/pubmed/34820673
http://dx.doi.org/10.1016/j.jmsacl.2021.08.001
Descripción
Sumario:INTRODUCTION: Diagnosis of pheochromocytoma and paraganglioma (PPGL) is aided by the measurement of metanephrine (MN) and normetanephrine (NMN). Research suggests that 3-methoxytyramine (3MT), a dopamine (DA) metabolite, may serve as a biomarker of metastasis in patients with paraganglioma. Considering the very low endogenous plasma 3MT concentrations (<0.1 nM), highly sensitive and specific methods for 3MT are needed. METHODS: We developed a simple method for measurement of 3MT. Sample preparation was performed using solid phase micro-extraction with the eluates injected directly onto the LC-MS/MS. Data acquisition was performed in multiple reaction monitoring mode with an instrumental analysis time of 3 min per sample. We evaluated the method’s performance and analyzed samples from healthy individuals and pathological specimens. RESULTS: The limit of quantitation and upper limit of linearity were 0.03 nM and 20 nM, respectively. The intra-/inter-day imprecision for pooled plasma samples at concentrations of 0.04 nM, 0.2 nM, and 2 nM was 10.7%/18.3%, 4.5%/8.9%, and 3.1%/0.9%, respectively. Among samples with MN, NMN, or both MN and NMN above the reference intervals (RIs), 0%, 16% and 46%, respectively, showed 3MT greater than the proposed upper RI value of 0.1 nM; 12% of samples with DA above the RI had 3MT above 0.1 nM. CONCLUSIONS: The developed method allowed accurate quantitation of 3MT in patient samples and would provide valuable information to clinicians diagnosing or monitoring patients with PPGL. High 3MT concentrations in patient samples with MN and NMN within the respective RIs may alert clinicians of the possibility of a DA-producing tumor.