Cargando…
A network-based positive and unlabeled learning approach for fake news detection
Fake news can rapidly spread through internet users and can deceive a large audience. Due to those characteristics, they can have a direct impact on political and economic events. Machine Learning approaches have been used to assist fake news identification. However, since the spectrum of real news...
Autores principales: | de Souza, Mariana Caravanti, Nogueira, Bruno Magalhães, Rossi, Rafael Geraldeli, Marcacini, Ricardo Marcondes, dos Santos, Brucce Neves, Rezende, Solange Oliveira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601374/ https://www.ncbi.nlm.nih.gov/pubmed/34815619 http://dx.doi.org/10.1007/s10994-021-06111-6 |
Ejemplares similares
-
Learning to sense from events via semantic variational autoencoder
por: Gôlo, Marcos Paulo Silva, et al.
Publicado: (2021) -
On the enrichment of time series with textual data for forecasting agricultural commodity prices
por: Reis Filho, Ivan José, et al.
Publicado: (2022) -
“Fake Tan” or “Fake News”?
por: Meyer, Georg, et al.
Publicado: (2020) -
Who falls for fake news? Psychological and clinical profiling evidence of fake news consumers
por: Escolà-Gascón, Álex, et al.
Publicado: (2023) -
From evidence to fake news
por: Carracedo, Gonzalo, et al.
Publicado: (2021)