Cargando…

Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: A scoping review

BACKGROUND: In the field of orthotics, the use of three-dimensional (3D) technology as an alternative to the conventional production process of orthoses is growing. PURPOSE: This scoping review aimed to systematically map and summarize studies assessing the effectiveness of 3D-printed orthoses for t...

Descripción completa

Detalles Bibliográficos
Autores principales: Oud, T. A. M., Lazzari, E., Gijsbers, H. J. H., Gobbo, M., Nollet, F., Brehm, M. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601455/
https://www.ncbi.nlm.nih.gov/pubmed/34793566
http://dx.doi.org/10.1371/journal.pone.0260271
Descripción
Sumario:BACKGROUND: In the field of orthotics, the use of three-dimensional (3D) technology as an alternative to the conventional production process of orthoses is growing. PURPOSE: This scoping review aimed to systematically map and summarize studies assessing the effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions, and to identify knowledge gaps. METHODS: The Cochrane Library, PubMed, EMBASE, CINAHL, Web of Science, IEEE, and PEDro were searched for studies of any type of 3D-printed orthoses for traumatic and chronic hand conditions. Any outcome related to the effectiveness of 3D-printed orthoses was considered. Two reviewers selected eligible studies, charted data on study characteristics by impairment type, and critically appraised the studies, except for case reports/series. RESULTS: Seventeen studies were included: four randomized controlled trials, four uncontrolled trials, four case series and five case reports. Only three studies had a sample size >20. Impairments described were forearm fractures (n = 5), spasticity (n = 5), muscle weakness (n = 4), joint contractures (n = 2) and pain (n = 1). Four poor to fair quality studies on forearm fractures supported the effectiveness of 3D-printed orthoses on hand function, functionality, and satisfaction. One good quality study on spasticity demonstrated the effectiveness of 3D-printed orthoses on hand function. One poor quality pain study reported limited positive effects on satisfaction. Studies on muscle weakness and joint contractures showed no benefits. CONCLUSION: Current literature addressing the effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions consists primarily of small and poor methodological quality studies. There is a need for well-designed controlled trials including patient-related outcomes, production time and cost analyses.