Cargando…
Mask, Train, Repeat! Artificial Intelligence for Quantitative Wood Anatomy
The recent developments in artificial intelligence have the potential to facilitate new research methods in ecology. Especially Deep Convolutional Neural Networks (DCNNs) have been shown to outperform other approaches in automatic image analyses. Here we apply a DCNN to facilitate quantitative wood...
Autores principales: | Resente, Giulia, Gillert, Alexander, Trouillier, Mario, Anadon-Rosell, Alba, Peters, Richard L., von Arx, Georg, von Lukas, Uwe, Wilmking, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601631/ https://www.ncbi.nlm.nih.gov/pubmed/34804101 http://dx.doi.org/10.3389/fpls.2021.767400 |
Ejemplares similares
-
Growth and Wood Trait Relationships of Alnus glutinosa in Peatland Forest Stands With Contrasting Water Regimes
por: Anadon-Rosell, Alba, et al.
Publicado: (2022) -
Direct and Indirect Effects of Environmental Limitations on White Spruce Xylem Anatomy at Treeline
por: Pampuch, Timo, et al.
Publicado: (2021) -
Xylem Anatomical Variability in White Spruce at Treeline Is Largely Driven by Spatial Clustering
por: Pampuch, Timo, et al.
Publicado: (2020) -
Quantitative Wood Anatomy—Practical Guidelines
por: von Arx, Georg, et al.
Publicado: (2016) -
Editorial: Quantitative wood anatomy to explore tree responses to global change
por: Gennaretti, Fabio, et al.
Publicado: (2022)