Cargando…
An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network
The cry is a loud, high pitched verbal communication of infants. The very high fundamental frequency and resonance frequency characterize a neonatal infant cry having certain sudden variations. Furthermore, in a tiny duration solitary utterance, the cry signal also possesses both voiced and unvoiced...
Autores principales: | Chang, Chuan-Yu, Bhattacharya, Sweta, Raj Vincent, P. M. Durai, Lakshmanna, Kuruva, Srinivasan, Kathiravan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601804/ https://www.ncbi.nlm.nih.gov/pubmed/34804460 http://dx.doi.org/10.1155/2021/7517313 |
Ejemplares similares
-
Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models
por: K, Ashwini, et al.
Publicado: (2021) -
A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification
por: Joshi, Vinayak Ravi, et al.
Publicado: (2022) -
Skin lesion classification of dermoscopic images using machine learning and convolutional neural network
por: Shetty, Bhuvaneshwari, et al.
Publicado: (2022) -
Author Correction: Skin lesion classification of dermoscopic images using machine learning and convolutional neural network
por: Shetty, Bhuvaneshwari, et al.
Publicado: (2022) -
Improving the Classification of Alzheimer’s Disease Using Hybrid Gene Selection Pipeline and Deep Learning
por: Mahendran, Nivedhitha, et al.
Publicado: (2021)