Cargando…
Adaptive Localizing Region-Based Level Set for Segmentation of Maxillary Sinus Based on Convolutional Neural Networks
In this paper, we propose a novel method, an adaptive localizing region-based level set using convolutional neural network, for improving performance of maxillary sinus segmentation. The healthy sinus without lesion inside is easy for conventional algorithms. However, in practice, most of the cases...
Autores principales: | Qi, Xianglong, Zhong, Jie, Cui, Shengjia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601823/ https://www.ncbi.nlm.nih.gov/pubmed/34804142 http://dx.doi.org/10.1155/2021/4824613 |
Ejemplares similares
-
Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images
por: Morgan, Nermin, et al.
Publicado: (2022) -
Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network
por: Jung, Seok-Ki, et al.
Publicado: (2021) -
Aux-MVNet: Auxiliary Classifier-Based Multi-View Convolutional Neural Network for Maxillary Sinusitis Diagnosis on Paranasal Sinuses View
por: Lim, Sang-Heon, et al.
Publicado: (2022) -
Region Convolutional Neural Network for Brain Tumor Segmentation
por: Pitchai, R., et al.
Publicado: (2022) -
Liver segmentation in CT imaging with enhanced mask region-based convolutional neural networks
por: Chen, Xiaowen, et al.
Publicado: (2021)