Cargando…

The beneficial effects of green tea on sleep deprivation-induced cognitive deficits in rats: the involvement of hippocampal antioxidant defense

BACKGROUND: The weight of evidence suggests that sleep is essential for the processes of memory consolidation and sleep deprivation (SD) impairs the retention of long-term memory in both humans and experimental animals, which is associated with oxidative stress damage within the brain. Green tea pol...

Descripción completa

Detalles Bibliográficos
Autores principales: Forouzanfar, Fatemeh, Gholami, Jamileh, Foroughnia, Maryam, Payvar, Bahareh, Nemati, Saeideh, Khodadadegan, Mohammad Amin, Saheb, Mahsa, Hajali, Vahid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601997/
https://www.ncbi.nlm.nih.gov/pubmed/34820541
http://dx.doi.org/10.1016/j.heliyon.2021.e08336
Descripción
Sumario:BACKGROUND: The weight of evidence suggests that sleep is essential for the processes of memory consolidation and sleep deprivation (SD) impairs the retention of long-term memory in both humans and experimental animals, which is associated with oxidative stress damage within the brain. Green tea polyphenols have revealed carcinogenic, antioxidant, anti-, and anti-mutagenic properties. We aimed to investigate the possible protective effect of green tea extract (GTE) and its main active catechin, epigallocatechin-3-gallate (EGCG), on post-training total sleep deprivation (TSD) -induced spatial memory deficits and oxidative stress profile in the hippocampus of the rat. METHODS: Male rats were treated with saline, GTE (100 and 200 mg/kg/day), and EGCG (50 mg/kg/day) intraperitoneally for 21 days and then trained in Morris water maze (MWM) in a single day protocol. Immediately after the end of MWM training, animals were sleep deprived for 6 h by the gentle handling method, and then evaluated for spatial memory. Hippocampal levels of malondialdehyde, (MDA), and thiol was assessed as oxidant and antioxidant markers. RESULTS: Spatial memory was impaired in the TSD group and GTE at the dose of 200 mg/kg/day as well as EGCG at the dose of 50 mg/kg/day could reverse the impairment to the saline-treated levels. Despite the unchanged MDA levels, hippocampal total thiol was significantly decreased after TSD and EGCG increased it to the basal levels. CONCLUSION: In conclusion, green tea and its main catechin, EGCG, could prevent memory impairments during 6 h of TSD; probably through normalizing the antioxidant thiol defense system which was impaired during TSD.