Cargando…
Fooled twice: People cannot detect deepfakes but think they can
Hyper-realistic manipulations of audio-visual content, i.e., deepfakes, present new challenges for establishing the veracity of online content. Research on the human impact of deepfakes remains sparse. In a pre-registered behavioral experiment (N = 210), we show that (1) people cannot reliably detec...
Autores principales: | Köbis, Nils C., Doležalová, Barbora, Soraperra, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602050/ https://www.ncbi.nlm.nih.gov/pubmed/34820608 http://dx.doi.org/10.1016/j.isci.2021.103364 |
Ejemplares similares
-
Warning: Humans cannot reliably detect speech deepfakes
por: Mai, Kimberly T., et al.
Publicado: (2023) -
Cheetahs cannot fool biologgers
por: Illing, Björn
Publicado: (2018) -
The Face Deepfake Detection Challenge
por: Guarnera, Luca, et al.
Publicado: (2022) -
“Any fool can make a rule and any fool will mind it”
por: Wells, Athol U.
Publicado: (2016) -
Commentary: Fool me once, shame on you, fool me twice, shame on me—preparing for acute aortic emergencies and the next wave of the COVID-19 pandemic
por: Lau, Christopher, et al.
Publicado: (2021)