Cargando…
TEMPO-Oxidized Cellulose Nanofiber-Alginate Hydrogel as a Bioink for Human Meniscus Tissue Engineering
Objective: The avascular inner regions of the knee menisci cannot self-heal. As a prospective treatment, functional replacements can be generated by cell-based 3D bioprinting with an appropriate cell source and biomaterial. To that end, human meniscus fibrochondrocytes (hMFC) from surgical castoffs...
Autores principales: | Lan, Xiaoyi, Ma, Zhiyao, Szojka, Alexander R. A., Kunze, Melanie, Mulet-Sierra, Aillette, Vyhlidal, Margaret J., Boluk, Yaman, Adesida, Adetola B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602093/ https://www.ncbi.nlm.nih.gov/pubmed/34805119 http://dx.doi.org/10.3389/fbioe.2021.766399 |
Ejemplares similares
-
Engineered Human Meniscus in Modeling Sex Differences of Knee Osteoarthritis in Vitro
por: Ma, Zhiyao, et al.
Publicado: (2022) -
Mechano-Hypoxia Conditioning of Engineered Human Meniscus
por: Szojka, Alexander R. A., et al.
Publicado: (2021) -
In vitro maturation and in vivo stability of bioprinted human nasal
cartilage
por: Lan, Xiaoyi, et al.
Publicado: (2022) -
Non-hypertrophic chondrogenesis of mesenchymal stem cells through
mechano-hypoxia programing
por: Li, David Xinzheyang, et al.
Publicado: (2023) -
Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity
por: Weiss, William M., et al.
Publicado: (2017)