Cargando…
Metabolic characterization and metabolism-score of tumor to predict the prognosis in prostate cancer
Tumor metabolism patterns have been reported to be associated with the prognosis of many cancers. However, the metabolic mechanisms underlying prostate cancer (PCa) remain unknown. This study aimed to explore the metabolic characteristics of PCa. First, we downloaded mRNA expression data and clinica...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602249/ https://www.ncbi.nlm.nih.gov/pubmed/34795309 http://dx.doi.org/10.1038/s41598-021-01140-6 |
Sumario: | Tumor metabolism patterns have been reported to be associated with the prognosis of many cancers. However, the metabolic mechanisms underlying prostate cancer (PCa) remain unknown. This study aimed to explore the metabolic characteristics of PCa. First, we downloaded mRNA expression data and clinical information of PCa samples from multiple databases and quantified the metabolic pathway activity level using single-sample gene set enrichment analysis (ssGSEA). Through unsupervised clustering and principal component analyses, we explored metabolic characteristics and constructed a metabolic score for PCa. Then, we independently validated the prognostic value of our metabolic score and the nomogram based on the metabolic score in multiple databases. Next, we found the metabolic score to be closely related to the tumor microenvironment and DNA mutation using multi-omics data and ssGSEA. Finally, we found different features of drug sensitivity in PCa patients in the high/low metabolic score groups. In total, 1232 samples were analyzed in the present study. Overall, an improved understanding of tumor metabolism through the characterization of metabolic clusters and metabolic score may help clinicians predict prognosis and aid the development of more personalized anti-tumor therapeutic strategies for PCa. |
---|