Cargando…
A new seven level boost-type ANPC inverter topology for photovoltaic applications
Developing of new photovoltaic inverter topologies is received more attention in the last few years. In particular, designing an active neutral-point-clamping inverter type structure is quite popular for PV applications. The output voltage is always half of the input voltage (v(in)), which further i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602254/ https://www.ncbi.nlm.nih.gov/pubmed/34795325 http://dx.doi.org/10.1038/s41598-021-01669-6 |
Sumario: | Developing of new photovoltaic inverter topologies is received more attention in the last few years. In particular, designing an active neutral-point-clamping inverter type structure is quite popular for PV applications. The output voltage is always half of the input voltage (v(in)), which further increases the voltage rating of dc-link capacitors in the conventional three-level ANPC. To rectify the above problem and increase the output voltage by reducing dc-link capacitors voltage rating, a new boost type seven-level ANPC inverter topology is proposed. The proposed topology consists of seven switches and one floating capacitor. The floating capacitor voltage is self-balanced, and the output voltage is 1.5 times higher than the input voltage. A detailed comparison for some power components, power loss and cost with other existing topologies are presented. Further, the proposed topology is validated in a prototype hardware setup for different load values. |
---|