Cargando…

A new seven level boost-type ANPC inverter topology for photovoltaic applications

Developing of new photovoltaic inverter topologies is received more attention in the last few years. In particular, designing an active neutral-point-clamping inverter type structure is quite popular for PV applications. The output voltage is always half of the input voltage (v(in)), which further i...

Descripción completa

Detalles Bibliográficos
Autores principales: M., Jagabar Sathik, Almakhles, Dhafer J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602254/
https://www.ncbi.nlm.nih.gov/pubmed/34795325
http://dx.doi.org/10.1038/s41598-021-01669-6
Descripción
Sumario:Developing of new photovoltaic inverter topologies is received more attention in the last few years. In particular, designing an active neutral-point-clamping inverter type structure is quite popular for PV applications. The output voltage is always half of the input voltage (v(in)), which further increases the voltage rating of dc-link capacitors in the conventional three-level ANPC. To rectify the above problem and increase the output voltage by reducing dc-link capacitors voltage rating, a new boost type seven-level ANPC inverter topology is proposed. The proposed topology consists of seven switches and one floating capacitor. The floating capacitor voltage is self-balanced, and the output voltage is 1.5 times higher than the input voltage. A detailed comparison for some power components, power loss and cost with other existing topologies are presented. Further, the proposed topology is validated in a prototype hardware setup for different load values.