Cargando…
Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
Automatic pattern recognition using deep learning techniques has become increasingly important. Unfortunately, due to limited system memory, general preprocessing methods for high-resolution images in the spatial domain can lose important data information such as high-frequency information and the r...
Autores principales: | Kim, Hyeongsub, Yoon, Hongjoon, Thakur, Nishant, Hwang, Gyoyeon, Lee, Eun Jung, Kim, Chulhong, Chong, Yosep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602325/ https://www.ncbi.nlm.nih.gov/pubmed/34795365 http://dx.doi.org/10.1038/s41598-021-01905-z |
Ejemplares similares
-
High Expression of PD-L1 Is Associated with Better Survival in Pancreatic/Periampullary Cancers and Correlates with Epithelial to Mesenchymal Transition
por: Thakur, Nishant, et al.
Publicado: (2021) -
Diagnosis prediction of tumours of unknown origin using ImmunoGenius, a machine learning-based expert system for immunohistochemistry profile interpretation
por: Chong, Yosep, et al.
Publicado: (2021) -
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
por: Ren, Jian, et al.
Publicado: (2019) -
Optimized JPEG 2000 Compression for Efficient Storage of Histopathological Whole-Slide Images
por: Helin, Henrik, et al.
Publicado: (2018) -
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019)