Cargando…
Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors
Metastatic cancer is associated with poor patient prognosis but its spatiotemporal behavior remains unpredictable at early stage. Here we develop MetaNet, a computational framework that integrates clinical and sequencing data from 32,176 primary and metastatic cancer cases, to assess metastatic risk...
Autores principales: | Jiang, Biaobin, Mu, Quanhua, Qiu, Fufang, Li, Xuefeng, Xu, Weiqi, Yu, Jun, Fu, Weilun, Cao, Yong, Wang, Jiguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602327/ https://www.ncbi.nlm.nih.gov/pubmed/34795255 http://dx.doi.org/10.1038/s41467-021-27017-w |
Ejemplares similares
-
Are we there yet? A machine learning architecture to predict organotropic metastases
por: Skaro, Michael, et al.
Publicado: (2021) -
Mechanisms of T cell organotropism
por: Fu, Hongmei, et al.
Publicado: (2016) -
Extracellular vesicle‐associated organotropic metastasis
por: Mo, Zhenzhen, et al.
Publicado: (2020) -
The metabolic adaptation mechanism of metastatic organotropism
por: Wang, Chao, et al.
Publicado: (2021) -
Tumour exosome integrins determine organotropic metastasis
por: Hoshino, Ayuko, et al.
Publicado: (2015)