Cargando…
Exploring the potential of machine learning for simulations of urban ozone variability
Machine learning (ML) has emerged as a powerful technique in the Earth system science, nevertheless, its potential to model complex atmospheric chemistry remains largely unexplored. Here, we applied ML to simulate the variability in urban ozone (O(3)) over Doon valley of the Himalaya. The ML model,...
Autores principales: | Ojha, Narendra, Girach, Imran, Sharma, Kiran, Sharma, Amit, Singh, Narendra, Gunthe, Sachin S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602617/ https://www.ncbi.nlm.nih.gov/pubmed/34795336 http://dx.doi.org/10.1038/s41598-021-01824-z |
Ejemplares similares
-
On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter
por: Ojha, Narendra, et al.
Publicado: (2020) -
Ozone chemistry and dynamics at a tropical coastal site impacted by the COVID-19 lockdown
por: Girach, Imran A, et al.
Publicado: (2021) -
Mechanisms and Pathways for Coordinated Control of Fine Particulate Matter and Ozone
por: Ojha, Narendra, et al.
Publicado: (2022) -
Frequency distribution of pollutant concentrations over Indian megacities impacted by the COVID-19 lockdown
por: Mondal, Arnab, et al.
Publicado: (2021) -
Black carbon over tropical Indian coast during the COVID-19 lockdown: inconspicuous role of coastal meteorology
por: Vaishya, Aditya, et al.
Publicado: (2023)