Cargando…

Magic in twisted transition metal dichalcogenide bilayers

The long-wavelength moiré superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moiré bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe(2), at small twist angles using a combination of firs...

Descripción completa

Detalles Bibliográficos
Autores principales: Devakul, Trithep, Crépel, Valentin, Zhang, Yang, Fu, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602625/
https://www.ncbi.nlm.nih.gov/pubmed/34795273
http://dx.doi.org/10.1038/s41467-021-27042-9
_version_ 1784601610736893952
author Devakul, Trithep
Crépel, Valentin
Zhang, Yang
Fu, Liang
author_facet Devakul, Trithep
Crépel, Valentin
Zhang, Yang
Fu, Liang
author_sort Devakul, Trithep
collection PubMed
description The long-wavelength moiré superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moiré bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe(2), at small twist angles using a combination of first principles density functional theory, continuum modeling, and Hartree-Fock approximation. We reveal the rich physics at small twist angles θ < 4(∘), and identify a particular magic angle at which the top valence moiré band achieves almost perfect flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott insulators at the filling of one hole per moiré unit cell. The combination of flat dispersion and uniformity of Berry curvature near the magic angle holds promise for realizing fractional quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at other integer fillings.
format Online
Article
Text
id pubmed-8602625
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86026252021-12-03 Magic in twisted transition metal dichalcogenide bilayers Devakul, Trithep Crépel, Valentin Zhang, Yang Fu, Liang Nat Commun Article The long-wavelength moiré superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moiré bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe(2), at small twist angles using a combination of first principles density functional theory, continuum modeling, and Hartree-Fock approximation. We reveal the rich physics at small twist angles θ < 4(∘), and identify a particular magic angle at which the top valence moiré band achieves almost perfect flatness. In the vicinity of this magic angle, we predict the realization of a generalized Kane-Mele model with a topological flat band, interaction-driven Haldane insulator, and Mott insulators at the filling of one hole per moiré unit cell. The combination of flat dispersion and uniformity of Berry curvature near the magic angle holds promise for realizing fractional quantum anomalous Hall effect at fractional filling. We also identify twist angles favorable for quantum spin Hall insulators and interaction-induced quantum anomalous Hall insulators at other integer fillings. Nature Publishing Group UK 2021-11-18 /pmc/articles/PMC8602625/ /pubmed/34795273 http://dx.doi.org/10.1038/s41467-021-27042-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Devakul, Trithep
Crépel, Valentin
Zhang, Yang
Fu, Liang
Magic in twisted transition metal dichalcogenide bilayers
title Magic in twisted transition metal dichalcogenide bilayers
title_full Magic in twisted transition metal dichalcogenide bilayers
title_fullStr Magic in twisted transition metal dichalcogenide bilayers
title_full_unstemmed Magic in twisted transition metal dichalcogenide bilayers
title_short Magic in twisted transition metal dichalcogenide bilayers
title_sort magic in twisted transition metal dichalcogenide bilayers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602625/
https://www.ncbi.nlm.nih.gov/pubmed/34795273
http://dx.doi.org/10.1038/s41467-021-27042-9
work_keys_str_mv AT devakultrithep magicintwistedtransitionmetaldichalcogenidebilayers
AT crepelvalentin magicintwistedtransitionmetaldichalcogenidebilayers
AT zhangyang magicintwistedtransitionmetaldichalcogenidebilayers
AT fuliang magicintwistedtransitionmetaldichalcogenidebilayers