Cargando…

Magnetization dependent tunneling conductance of ferromagnetic barriers

Recent experiments on van der Waals antiferromagnets have shown that measuring the temperature (T) and magnetic field (H) dependence of the conductance allows their magnetic phase diagram to be mapped. Similarly, experiments on ferromagnetic CrBr(3) barriers enabled the Curie temperature to be deter...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhe, Gutiérrez-Lezama, Ignacio, Dumcenco, Dumitru, Ubrig, Nicolas, Taniguchi, Takashi, Watanabe, Kenji, Giannini, Enrico, Gibertini, Marco, Morpurgo, Alberto F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602639/
https://www.ncbi.nlm.nih.gov/pubmed/34795253
http://dx.doi.org/10.1038/s41467-021-26973-7
_version_ 1784601613704364032
author Wang, Zhe
Gutiérrez-Lezama, Ignacio
Dumcenco, Dumitru
Ubrig, Nicolas
Taniguchi, Takashi
Watanabe, Kenji
Giannini, Enrico
Gibertini, Marco
Morpurgo, Alberto F.
author_facet Wang, Zhe
Gutiérrez-Lezama, Ignacio
Dumcenco, Dumitru
Ubrig, Nicolas
Taniguchi, Takashi
Watanabe, Kenji
Giannini, Enrico
Gibertini, Marco
Morpurgo, Alberto F.
author_sort Wang, Zhe
collection PubMed
description Recent experiments on van der Waals antiferromagnets have shown that measuring the temperature (T) and magnetic field (H) dependence of the conductance allows their magnetic phase diagram to be mapped. Similarly, experiments on ferromagnetic CrBr(3) barriers enabled the Curie temperature to be determined at H = 0, but a precise interpretation of the magnetoconductance data at H ≠ 0 is conceptually more complex, because at finite H there is no well-defined phase boundary. Here we perform systematic transport measurements on CrBr(3) barriers and show that the tunneling magnetoconductance depends on H and T exclusively through the magnetization M(H, T) over the entire temperature range investigated. The phenomenon is reproduced by the spin-dependent Fowler–Nordheim model for tunneling, and is a direct manifestation of the spin splitting of the CrBr(3) conduction band. Our analysis unveils a new approach to probe quantitatively different properties of atomically thin ferromagnetic insulators related to their magnetization by performing simple conductance measurements.
format Online
Article
Text
id pubmed-8602639
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86026392021-12-03 Magnetization dependent tunneling conductance of ferromagnetic barriers Wang, Zhe Gutiérrez-Lezama, Ignacio Dumcenco, Dumitru Ubrig, Nicolas Taniguchi, Takashi Watanabe, Kenji Giannini, Enrico Gibertini, Marco Morpurgo, Alberto F. Nat Commun Article Recent experiments on van der Waals antiferromagnets have shown that measuring the temperature (T) and magnetic field (H) dependence of the conductance allows their magnetic phase diagram to be mapped. Similarly, experiments on ferromagnetic CrBr(3) barriers enabled the Curie temperature to be determined at H = 0, but a precise interpretation of the magnetoconductance data at H ≠ 0 is conceptually more complex, because at finite H there is no well-defined phase boundary. Here we perform systematic transport measurements on CrBr(3) barriers and show that the tunneling magnetoconductance depends on H and T exclusively through the magnetization M(H, T) over the entire temperature range investigated. The phenomenon is reproduced by the spin-dependent Fowler–Nordheim model for tunneling, and is a direct manifestation of the spin splitting of the CrBr(3) conduction band. Our analysis unveils a new approach to probe quantitatively different properties of atomically thin ferromagnetic insulators related to their magnetization by performing simple conductance measurements. Nature Publishing Group UK 2021-11-18 /pmc/articles/PMC8602639/ /pubmed/34795253 http://dx.doi.org/10.1038/s41467-021-26973-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wang, Zhe
Gutiérrez-Lezama, Ignacio
Dumcenco, Dumitru
Ubrig, Nicolas
Taniguchi, Takashi
Watanabe, Kenji
Giannini, Enrico
Gibertini, Marco
Morpurgo, Alberto F.
Magnetization dependent tunneling conductance of ferromagnetic barriers
title Magnetization dependent tunneling conductance of ferromagnetic barriers
title_full Magnetization dependent tunneling conductance of ferromagnetic barriers
title_fullStr Magnetization dependent tunneling conductance of ferromagnetic barriers
title_full_unstemmed Magnetization dependent tunneling conductance of ferromagnetic barriers
title_short Magnetization dependent tunneling conductance of ferromagnetic barriers
title_sort magnetization dependent tunneling conductance of ferromagnetic barriers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602639/
https://www.ncbi.nlm.nih.gov/pubmed/34795253
http://dx.doi.org/10.1038/s41467-021-26973-7
work_keys_str_mv AT wangzhe magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT gutierrezlezamaignacio magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT dumcencodumitru magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT ubrignicolas magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT taniguchitakashi magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT watanabekenji magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT gianninienrico magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT gibertinimarco magnetizationdependenttunnelingconductanceofferromagneticbarriers
AT morpurgoalbertof magnetizationdependenttunnelingconductanceofferromagneticbarriers