Cargando…
scLM: Automatic Detection of Consensus Gene Clusters Across Multiple Single-cell Datasets
In gene expression profiling studies, including single-cell RNAsequencing (scRNA-seq) analyses, the identification and characterization of co-expressed genes provides critical information on cell identity and function. Gene co-expression clustering in scRNA-seq data presents certain challenges. We s...
Autores principales: | Song, Qianqian, Su, Jing, Miller, Lance D., Zhang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602751/ https://www.ncbi.nlm.nih.gov/pubmed/33359676 http://dx.doi.org/10.1016/j.gpb.2020.09.002 |
Ejemplares similares
-
scMC learns biological variation through the alignment of multiple single-cell genomics datasets
por: Zhang, Lihua, et al.
Publicado: (2021) -
Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets
por: Pont, Frédéric, et al.
Publicado: (2019) -
scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data
por: Wang, Zongqin, et al.
Publicado: (2023) -
ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy
por: Brama, Elisabeth, et al.
Publicado: (2016) -
scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens
por: Yang, Lin, et al.
Publicado: (2020)