Cargando…
A Machine learning model trained on dual-energy CT radiomics significantly improves immunotherapy response prediction for patients with stage IV melanoma
BACKGROUND: To assess the additive value of dual-energy CT (DECT) over single-energy CT (SECT) to radiomics-based response prediction in patients with metastatic melanoma preceding immunotherapy. MATERIAL AND METHODS: A total of 140 consecutive patients with melanoma (58 female, 63±16 years) for who...
Autores principales: | Brendlin, Andreas Stefan, Peisen, Felix, Almansour, Haidara, Afat, Saif, Eigentler, Thomas, Amaral, Teresa, Faby, Sebastian, Calvarons, Adria Font, Nikolaou, Konstantin, Othman, Ahmed E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8603266/ https://www.ncbi.nlm.nih.gov/pubmed/34795006 http://dx.doi.org/10.1136/jitc-2021-003261 |
Ejemplares similares
-
Combination of Whole-Body Baseline CT Radiomics and Clinical Parameters to Predict Response and Survival in a Stage-IV Melanoma Cohort Undergoing Immunotherapy
por: Peisen, Felix, et al.
Publicado: (2022) -
Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB–IV NSCLC (LCDigital-IO Study): a multicenter retrospective study
por: Wu, Shaowei, et al.
Publicado: (2023) -
Radiomics to evaluate interlesion heterogeneity and to predict lesion response and patient outcomes using a validated signature of CD8 cells in advanced melanoma patients treated with anti-PD1 immunotherapy
por: Sun, Roger, et al.
Publicado: (2022) -
Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma
por: Gaißler, Andrea, et al.
Publicado: (2023) -
Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker
por: He, Bingxi, et al.
Publicado: (2020)