Cargando…
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
Spiking Neural Networks (SNNs) are a pathway that could potentially empower low-power event-driven neuromorphic hardware due to their spatio-temporal information processing capability and high biological plausibility. Although SNNs are currently more efficient than artificial neural networks (ANNs),...
Autores principales: | Liu, Fangxin, Zhao, Wenbo, Chen, Yongbiao, Wang, Zongwu, Yang, Tao, Jiang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8603828/ https://www.ncbi.nlm.nih.gov/pubmed/34803591 http://dx.doi.org/10.3389/fnins.2021.756876 |
Ejemplares similares
-
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
por: Chakraborty, Biswadeep, et al.
Publicado: (2021) -
Supervised Learning with Complex Spikes and Spike-Timing-Dependent Plasticity
por: Houghton, Conor
Publicado: (2014) -
Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks
por: Gardner, Brian, et al.
Publicado: (2021) -
SpikePropamine: Differentiable Plasticity in Spiking Neural Networks
por: Schmidgall, Samuel, et al.
Publicado: (2021) -
Topological dynamics in spike-timing dependent plastic model neural networks
por: Stone, David B., et al.
Publicado: (2013)