Cargando…
Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways
Breast cancer is the cancer most often diagnosed in women. MicroRNAs (MIRs) are short RNA molecules that bind mRNA resulting in their downregulation. MIR21 has been shown to be an oncomiR in most cancer types, including breast cancer. Most of the effects of miR-21 have been attributed to hsa-miR-21-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604322/ https://www.ncbi.nlm.nih.gov/pubmed/34797887 http://dx.doi.org/10.1371/journal.pone.0260327 |
_version_ | 1784601933893337088 |
---|---|
author | Amirfallah, Arsalan Knutsdottir, Hildur Arason, Adalgeir Hilmarsdottir, Bylgja Johannsson, Oskar T. Agnarsson, Bjarni A. Barkardottir, Rosa B. Reynisdottir, Inga |
author_facet | Amirfallah, Arsalan Knutsdottir, Hildur Arason, Adalgeir Hilmarsdottir, Bylgja Johannsson, Oskar T. Agnarsson, Bjarni A. Barkardottir, Rosa B. Reynisdottir, Inga |
author_sort | Amirfallah, Arsalan |
collection | PubMed |
description | Breast cancer is the cancer most often diagnosed in women. MicroRNAs (MIRs) are short RNA molecules that bind mRNA resulting in their downregulation. MIR21 has been shown to be an oncomiR in most cancer types, including breast cancer. Most of the effects of miR-21 have been attributed to hsa-miR-21-5p that is transcribed from the leading strand of MIR21, but hsa-miR-21-3p (miR-21-3p), transcribed from the lagging strand, is much less studied. The aim of the study is to analyze whether expression of miR-21-3p is prognostic for breast cancer. MiR-21-3p association with survival, clinical and pathological characteristics was analyzed in a large breast cancer cohort and validated in three separate cohorts, including TCGA and METABRIC. Analytical tools were also used to infer miR-21-3p function and to identify potential target genes and functional pathways. The results showed that in the exploration cohort, high miR-21-3p levels associated with shorter survival and lymph node positivity. In the three validation cohorts, high miR-21-3p levels associated with pathological characteristics that predict worse prognosis. Specifically, in the largest validation cohort, METABRIC (n = 1174), high miR-21-3p levels associated with large tumors, a high grade, lymph node and HER2 positivity, and shorter breast-cancer-specific survival (HR = 1.38, CI 1.13–1.68). This association remained significant after adjusting for confounding factors. The genes with expression levels that correlated with miR-21-3p were enriched in particular pathways, including the epithelial-to-mesenchymal transition and proliferation. Among the most significantly downregulated targets were MAT2A and the tumor suppressive genes STARD13 and ZNF132. The results from this study emphasize that both 3p- and 5p-arms from a MIR warrant independent study. The data show that miR-21-3p overexpression in breast tumors is a marker of worse breast cancer progression and it affects genes in pathways that drive breast cancer by down-regulating tumor suppressor genes. The results suggest miR-21-3p as a potential biomarker. |
format | Online Article Text |
id | pubmed-8604322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86043222021-11-20 Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways Amirfallah, Arsalan Knutsdottir, Hildur Arason, Adalgeir Hilmarsdottir, Bylgja Johannsson, Oskar T. Agnarsson, Bjarni A. Barkardottir, Rosa B. Reynisdottir, Inga PLoS One Research Article Breast cancer is the cancer most often diagnosed in women. MicroRNAs (MIRs) are short RNA molecules that bind mRNA resulting in their downregulation. MIR21 has been shown to be an oncomiR in most cancer types, including breast cancer. Most of the effects of miR-21 have been attributed to hsa-miR-21-5p that is transcribed from the leading strand of MIR21, but hsa-miR-21-3p (miR-21-3p), transcribed from the lagging strand, is much less studied. The aim of the study is to analyze whether expression of miR-21-3p is prognostic for breast cancer. MiR-21-3p association with survival, clinical and pathological characteristics was analyzed in a large breast cancer cohort and validated in three separate cohorts, including TCGA and METABRIC. Analytical tools were also used to infer miR-21-3p function and to identify potential target genes and functional pathways. The results showed that in the exploration cohort, high miR-21-3p levels associated with shorter survival and lymph node positivity. In the three validation cohorts, high miR-21-3p levels associated with pathological characteristics that predict worse prognosis. Specifically, in the largest validation cohort, METABRIC (n = 1174), high miR-21-3p levels associated with large tumors, a high grade, lymph node and HER2 positivity, and shorter breast-cancer-specific survival (HR = 1.38, CI 1.13–1.68). This association remained significant after adjusting for confounding factors. The genes with expression levels that correlated with miR-21-3p were enriched in particular pathways, including the epithelial-to-mesenchymal transition and proliferation. Among the most significantly downregulated targets were MAT2A and the tumor suppressive genes STARD13 and ZNF132. The results from this study emphasize that both 3p- and 5p-arms from a MIR warrant independent study. The data show that miR-21-3p overexpression in breast tumors is a marker of worse breast cancer progression and it affects genes in pathways that drive breast cancer by down-regulating tumor suppressor genes. The results suggest miR-21-3p as a potential biomarker. Public Library of Science 2021-11-19 /pmc/articles/PMC8604322/ /pubmed/34797887 http://dx.doi.org/10.1371/journal.pone.0260327 Text en © 2021 Amirfallah et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Amirfallah, Arsalan Knutsdottir, Hildur Arason, Adalgeir Hilmarsdottir, Bylgja Johannsson, Oskar T. Agnarsson, Bjarni A. Barkardottir, Rosa B. Reynisdottir, Inga Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways |
title | Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways |
title_full | Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways |
title_fullStr | Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways |
title_full_unstemmed | Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways |
title_short | Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways |
title_sort | hsa-mir-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604322/ https://www.ncbi.nlm.nih.gov/pubmed/34797887 http://dx.doi.org/10.1371/journal.pone.0260327 |
work_keys_str_mv | AT amirfallaharsalan hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways AT knutsdottirhildur hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways AT arasonadalgeir hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways AT hilmarsdottirbylgja hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways AT johannssonoskart hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways AT agnarssonbjarnia hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways AT barkardottirrosab hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways AT reynisdottiringa hsamir213passociateswithbreastcancerpatientsurvivalandtargetsgenesintumorsuppressivepathways |