Cargando…
Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data
Longitudinal intervention studies with repeated measurements over time are an important type of experimental design in biomedical research. Due to the advent of “omics”-sciences (genomics, transcriptomics, proteomics, metabolomics), longitudinal studies generate increasingly multivariate outcome dat...
Autores principales: | Madssen, Torfinn S., Giskeødegård, Guro F., Smilde, Age K., Westerhuis, Johan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604364/ https://www.ncbi.nlm.nih.gov/pubmed/34752455 http://dx.doi.org/10.1371/journal.pcbi.1009585 |
Ejemplares similares
-
ALASCA: An R package for longitudinal and cross-sectional analysis of multivariate data by ASCA-based methods
por: Jarmund, Anders Hagen, et al.
Publicado: (2022) -
Statistical validation of megavariate effects in ASCA
por: Vis, Daniel J, et al.
Publicado: (2007) -
Analysis of high-dimensional metabolomics data with complex temporal dynamics using RM-ASCA+
por: Erdős, Balázs, et al.
Publicado: (2023) -
Multivariate paired data analysis: multilevel PLSDA versus OPLSDA
por: Westerhuis, Johan A., et al.
Publicado: (2009) -
Longitudinal Changes in Circulating Metabolites and Lipoproteins After Breast Cancer Treatment
por: Giskeødegård, Guro F., et al.
Publicado: (2022)