Cargando…

A perception-based nanosensor platform to detect cancer biomarkers

Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We deve...

Descripción completa

Detalles Bibliográficos
Autores principales: Yaari, Zvi, Yang, Yoona, Apfelbaum, Elana, Cupo, Christian, Settle, Alex H., Cullen, Quinlan, Cai, Winson, Roche, Kara Long, Levine, Douglas A., Fleisher, Martin, Ramanathan, Lakshmi, Zheng, Ming, Jagota, Anand, Heller, Daniel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604403/
https://www.ncbi.nlm.nih.gov/pubmed/34797711
http://dx.doi.org/10.1126/sciadv.abj0852
_version_ 1784601952840056832
author Yaari, Zvi
Yang, Yoona
Apfelbaum, Elana
Cupo, Christian
Settle, Alex H.
Cullen, Quinlan
Cai, Winson
Roche, Kara Long
Levine, Douglas A.
Fleisher, Martin
Ramanathan, Lakshmi
Zheng, Ming
Jagota, Anand
Heller, Daniel A.
author_facet Yaari, Zvi
Yang, Yoona
Apfelbaum, Elana
Cupo, Christian
Settle, Alex H.
Cullen, Quinlan
Cai, Winson
Roche, Kara Long
Levine, Douglas A.
Fleisher, Martin
Ramanathan, Lakshmi
Zheng, Ming
Jagota, Anand
Heller, Daniel A.
author_sort Yaari, Zvi
collection PubMed
description Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We developed a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, often diagnosed at advanced stages, leading to low survival rates. We investigated the detection of protein biomarkers in uterine lavage samples, which are enriched with certain cancer markers compared to blood. We found that the method enables the simultaneous detection of multiple biomarkers in patient samples, with F1-scores of ~0.95 in uterine lavage samples from patients with cancer. This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements.
format Online
Article
Text
id pubmed-8604403
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-86044032021-12-01 A perception-based nanosensor platform to detect cancer biomarkers Yaari, Zvi Yang, Yoona Apfelbaum, Elana Cupo, Christian Settle, Alex H. Cullen, Quinlan Cai, Winson Roche, Kara Long Levine, Douglas A. Fleisher, Martin Ramanathan, Lakshmi Zheng, Ming Jagota, Anand Heller, Daniel A. Sci Adv Physical and Materials Sciences Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We developed a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, often diagnosed at advanced stages, leading to low survival rates. We investigated the detection of protein biomarkers in uterine lavage samples, which are enriched with certain cancer markers compared to blood. We found that the method enables the simultaneous detection of multiple biomarkers in patient samples, with F1-scores of ~0.95 in uterine lavage samples from patients with cancer. This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements. American Association for the Advancement of Science 2021-11-19 /pmc/articles/PMC8604403/ /pubmed/34797711 http://dx.doi.org/10.1126/sciadv.abj0852 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Yaari, Zvi
Yang, Yoona
Apfelbaum, Elana
Cupo, Christian
Settle, Alex H.
Cullen, Quinlan
Cai, Winson
Roche, Kara Long
Levine, Douglas A.
Fleisher, Martin
Ramanathan, Lakshmi
Zheng, Ming
Jagota, Anand
Heller, Daniel A.
A perception-based nanosensor platform to detect cancer biomarkers
title A perception-based nanosensor platform to detect cancer biomarkers
title_full A perception-based nanosensor platform to detect cancer biomarkers
title_fullStr A perception-based nanosensor platform to detect cancer biomarkers
title_full_unstemmed A perception-based nanosensor platform to detect cancer biomarkers
title_short A perception-based nanosensor platform to detect cancer biomarkers
title_sort perception-based nanosensor platform to detect cancer biomarkers
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604403/
https://www.ncbi.nlm.nih.gov/pubmed/34797711
http://dx.doi.org/10.1126/sciadv.abj0852
work_keys_str_mv AT yaarizvi aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT yangyoona aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT apfelbaumelana aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT cupochristian aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT settlealexh aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT cullenquinlan aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT caiwinson aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT rochekaralong aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT levinedouglasa aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT fleishermartin aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT ramanathanlakshmi aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT zhengming aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT jagotaanand aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT hellerdaniela aperceptionbasednanosensorplatformtodetectcancerbiomarkers
AT yaarizvi perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT yangyoona perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT apfelbaumelana perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT cupochristian perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT settlealexh perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT cullenquinlan perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT caiwinson perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT rochekaralong perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT levinedouglasa perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT fleishermartin perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT ramanathanlakshmi perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT zhengming perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT jagotaanand perceptionbasednanosensorplatformtodetectcancerbiomarkers
AT hellerdaniela perceptionbasednanosensorplatformtodetectcancerbiomarkers