Cargando…

Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach

SARS-CoV-2 is drastically spread across the globe in a short period of time and affects the lives of billions. There is a need to find the promising drugs like candidates against the inhibition of novel corona virus or SARS-CoV-2. Herein, the interaction on sex hormones (testosterone and progesteron...

Descripción completa

Detalles Bibliográficos
Autores principales: Vishvakarma, Vijay Kumar, Pal, Shweta, Singh, Prashant, Bahadur, Indra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604630/
https://www.ncbi.nlm.nih.gov/pubmed/34840349
http://dx.doi.org/10.1016/j.molstruc.2021.131965
Descripción
Sumario:SARS-CoV-2 is drastically spread across the globe in a short period of time and affects the lives of billions. There is a need to find the promising drugs like candidates against the inhibition of novel corona virus or SARS-CoV-2. Herein, the interaction on sex hormones (testosterone and progesterone) with Mpro of SARS-CoV-2 was investigated with the help of molecular docking. The binding energy for the formation complex between the progesterone and testosterone with main protease of SARS-CoV-2 are -86.05 and -91.84 kcal/mol, respectively. From this, it can be understood that testosterone showed better binding affinity with Mpro of nCoV and thus, more inhibition of the main protease. Then, the binding was further studied using molecular dynamics simulations at different temperatures (300, 310 and 325) K. It has been observed that the formations of complex between the Mpro of nCoV with testosterone/ progesterone is better at 300 K than 310 and 325 K. Further, it is found that the more effective binding of testosterone with Mpro of nCoV is observed than the progesterone based on the RMSD, RMSF and H-bond trajectories. Results indicate the promising nature of testosterone towards the inhibition of Mpro of nCoV.