Cargando…
Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption
Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in pa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604756/ https://www.ncbi.nlm.nih.gov/pubmed/34853716 http://dx.doi.org/10.1016/j.omtn.2021.10.019 |
_version_ | 1784602031135129600 |
---|---|
author | Jüschke, Christoph Klopstock, Thomas Catarino, Claudia B. Owczarek-Lipska, Marta Wissinger, Bernd Neidhardt, John |
author_facet | Jüschke, Christoph Klopstock, Thomas Catarino, Claudia B. Owczarek-Lipska, Marta Wissinger, Bernd Neidhardt, John |
author_sort | Jüschke, Christoph |
collection | PubMed |
description | Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency. |
format | Online Article Text |
id | pubmed-8604756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-86047562021-11-30 Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption Jüschke, Christoph Klopstock, Thomas Catarino, Claudia B. Owczarek-Lipska, Marta Wissinger, Bernd Neidhardt, John Mol Ther Nucleic Acids Original Article Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency. American Society of Gene & Cell Therapy 2021-10-21 /pmc/articles/PMC8604756/ /pubmed/34853716 http://dx.doi.org/10.1016/j.omtn.2021.10.019 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Article Jüschke, Christoph Klopstock, Thomas Catarino, Claudia B. Owczarek-Lipska, Marta Wissinger, Bernd Neidhardt, John Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title | Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_full | Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_fullStr | Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_full_unstemmed | Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_short | Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption |
title_sort | autosomal dominant optic atrophy: a novel treatment for opa1 splice defects using u1 snrna adaption |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604756/ https://www.ncbi.nlm.nih.gov/pubmed/34853716 http://dx.doi.org/10.1016/j.omtn.2021.10.019 |
work_keys_str_mv | AT juschkechristoph autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT klopstockthomas autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT catarinoclaudiab autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT owczareklipskamarta autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT wissingerbernd autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption AT neidhardtjohn autosomaldominantopticatrophyanoveltreatmentforopa1splicedefectsusingu1snrnaadaption |