Cargando…
A weighted patient network-based framework for predicting chronic diseases using graph neural networks
Chronic disease prediction is a critical task in healthcare. Existing studies fulfil this requirement by employing machine learning techniques based on patient features, but they suffer from high dimensional data problems and a high level of bias. We propose a framework for predicting chronic diseas...
Autores principales: | Lu, Haohui, Uddin, Shahadat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604920/ https://www.ncbi.nlm.nih.gov/pubmed/34799627 http://dx.doi.org/10.1038/s41598-021-01964-2 |
Ejemplares similares
-
Disease Prediction Using Graph Machine Learning Based on Electronic Health Data: A Review of Approaches and Trends
por: Lu, Haohui, et al.
Publicado: (2023) -
Machine learning in project analytics: a data-driven framework and case study
por: Uddin, Shahadat, et al.
Publicado: (2022) -
Suburban Road Networks to Explore COVID-19 Vulnerability and Severity
por: Uddin, Shahadat, et al.
Publicado: (2022) -
Comparing the Impact of Road Networks on COVID-19 Severity between Delta and Omicron Variants: A Study Based on Greater Sydney (Australia) Suburbs
por: Uddin, Shahadat, et al.
Publicado: (2022) -
Sequence-based drug-target affinity prediction using weighted graph neural networks
por: Jiang, Mingjian, et al.
Publicado: (2022)