Cargando…
Manifold learning analysis suggests strategies to align single-cell multimodal data of neuronal electrophysiology and transcriptomics
Recent single-cell multimodal data reveal multi-scale characteristics of single cells, such as transcriptomics, morphology, and electrophysiology. However, integrating and analyzing such multimodal data to deeper understand functional genomics and gene regulation in various cellular characteristics...
Autores principales: | Huang, Jiawei, Sheng, Jie, Wang, Daifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604989/ https://www.ncbi.nlm.nih.gov/pubmed/34799674 http://dx.doi.org/10.1038/s42003-021-02807-6 |
Ejemplares similares
-
MANGEM: a web app for Multimodal Analysis of Neuronal Gene expression, Electrophysiology and Morphology
por: Olson, Robert Hermod, et al.
Publicado: (2023) -
MANGEM: A web app for multimodal analysis of neuronal gene expression, electrophysiology, and morphology
por: Olson, Robert Hermod, et al.
Publicado: (2023) -
MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
por: Welch, Joshua D., et al.
Publicado: (2017) -
Kernel Manifold Alignment for Domain Adaptation
por: Tuia, Devis, et al.
Publicado: (2016) -
Manifold alignment for heterogeneous single-cell multi-omics data integration using Pamona
por: Cao, Kai, et al.
Publicado: (2021)