Cargando…

Shape-programmable artificial cilia for microfluidics

The artificial ciliary motion has been known not to be hydrodynamically optimal, limiting their associated applications in the microscale flow domain. One of the major hurdles of contemporary artificial cilia is its structural rigidity, which restricts their flexibility. To address this issue, this...

Descripción completa

Detalles Bibliográficos
Autores principales: Panigrahi, Bivas, Sahadevan, Vignesh, Chen, Chia-Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605101/
https://www.ncbi.nlm.nih.gov/pubmed/34825146
http://dx.doi.org/10.1016/j.isci.2021.103367
Descripción
Sumario:The artificial ciliary motion has been known not to be hydrodynamically optimal, limiting their associated applications in the microscale flow domain. One of the major hurdles of contemporary artificial cilia is its structural rigidity, which restricts their flexibility. To address this issue, this work proposed a shape-programmable artificial cilia design with distinctive polydimethylsiloxane (PDMS) and magnetic segments distributed throughout the structure, which provided precise control for time-spatial modulation of the whole artificial cilia structure under external magnetic actuation. For the fabrication of the proposed multi-segment artificial cilia, a facile microfabrication process with stepwise mold blocking followed by the PDMS and magnetic composite casting was adopted. The hydrodynamic analysis further elucidated that the proposed artificial cilia beating induced significant flow disturbance within the flow field, and the associated application was demonstrated through an efficient mixing operation.