Cargando…

Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations

Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries...

Descripción completa

Detalles Bibliográficos
Autores principales: Samuelson, Clare, Radtke, Stefan, Zhu, Haiying, Llewellyn, Mallory, Fields, Emily, Cook, Savannah, Huang, Meei-Li W., Jerome, Keith R., Kiem, Hans-Peter, Humbert, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605315/
https://www.ncbi.nlm.nih.gov/pubmed/34853798
http://dx.doi.org/10.1016/j.omtm.2021.10.008
_version_ 1784602152346320896
author Samuelson, Clare
Radtke, Stefan
Zhu, Haiying
Llewellyn, Mallory
Fields, Emily
Cook, Savannah
Huang, Meei-Li W.
Jerome, Keith R.
Kiem, Hans-Peter
Humbert, Olivier
author_facet Samuelson, Clare
Radtke, Stefan
Zhu, Haiying
Llewellyn, Mallory
Fields, Emily
Cook, Savannah
Huang, Meei-Li W.
Jerome, Keith R.
Kiem, Hans-Peter
Humbert, Olivier
author_sort Samuelson, Clare
collection PubMed
description Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk.
format Online
Article
Text
id pubmed-8605315
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society of Gene & Cell Therapy
record_format MEDLINE/PubMed
spelling pubmed-86053152021-11-30 Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations Samuelson, Clare Radtke, Stefan Zhu, Haiying Llewellyn, Mallory Fields, Emily Cook, Savannah Huang, Meei-Li W. Jerome, Keith R. Kiem, Hans-Peter Humbert, Olivier Mol Ther Methods Clin Dev Original Article Sickle cell disease and β-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk. American Society of Gene & Cell Therapy 2021-10-28 /pmc/articles/PMC8605315/ /pubmed/34853798 http://dx.doi.org/10.1016/j.omtm.2021.10.008 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Samuelson, Clare
Radtke, Stefan
Zhu, Haiying
Llewellyn, Mallory
Fields, Emily
Cook, Savannah
Huang, Meei-Li W.
Jerome, Keith R.
Kiem, Hans-Peter
Humbert, Olivier
Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_full Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_fullStr Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_full_unstemmed Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_short Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
title_sort multiplex crispr/cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605315/
https://www.ncbi.nlm.nih.gov/pubmed/34853798
http://dx.doi.org/10.1016/j.omtm.2021.10.008
work_keys_str_mv AT samuelsonclare multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT radtkestefan multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT zhuhaiying multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT llewellynmallory multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT fieldsemily multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT cooksavannah multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT huangmeeiliw multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT jeromekeithr multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT kiemhanspeter multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations
AT humbertolivier multiplexcrisprcas9genomeeditinginhematopoieticstemcellsforfetalhemoglobinreinductiongenerateschromosomaltranslocations