Cargando…
RBPSpot: Learning on appropriate contextual information for RBP binding sites discovery
Identifying the factors determining the RBP-RNA interactions remains a big challenge. It involves sparse binding motifs and a suitable sequence context for binding. The present work describes an approach to detect RBP binding sites in RNAs using an ultra-fast inexact k-mers search for statistically...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605353/ https://www.ncbi.nlm.nih.gov/pubmed/34841226 http://dx.doi.org/10.1016/j.isci.2021.103381 |
Sumario: | Identifying the factors determining the RBP-RNA interactions remains a big challenge. It involves sparse binding motifs and a suitable sequence context for binding. The present work describes an approach to detect RBP binding sites in RNAs using an ultra-fast inexact k-mers search for statistically significant seeds. The seeds work as an anchor to evaluate the context and binding potential using flanking region information while leveraging from Deep Feed-forward Neural Network. The developed models also received support from MD-simulation studies. The implemented software, RBPSpot, scored consistently high for all the performance metrics including average accuracy of ∼90% across a large number of validated datasets. It outperformed the compared tools, including some with much complex deep-learning models, during a comprehensive benchmarking process. RBPSpot can identify RBP binding sites in the human system and can also be used to develop new models, making it a valuable resource in the area of regulatory system studies. |
---|