Cargando…

Optogenetic axon guidance in embryonic zebrafish

Axons form the long-range connections of biological neuronal networks, which are built through the developmental process of axon guidance. Here, we describe a protocol to precisely and non-invasively control axonal growth trajectories in live zebrafish embryos using focal light activation of a photo...

Descripción completa

Detalles Bibliográficos
Autores principales: Harris, James M., Yu-Der Wang, Andy, Arlotta, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605397/
https://www.ncbi.nlm.nih.gov/pubmed/34841275
http://dx.doi.org/10.1016/j.xpro.2021.100947
_version_ 1784602168559403008
author Harris, James M.
Yu-Der Wang, Andy
Arlotta, Paola
author_facet Harris, James M.
Yu-Der Wang, Andy
Arlotta, Paola
author_sort Harris, James M.
collection PubMed
description Axons form the long-range connections of biological neuronal networks, which are built through the developmental process of axon guidance. Here, we describe a protocol to precisely and non-invasively control axonal growth trajectories in live zebrafish embryos using focal light activation of a photoactivatable Rac1. We outline techniques for photostimulation, time-lapse imaging, and immunohistochemistry. These approaches enable engineering of long-range axonal circuitry or repair of defective circuits in living zebrafish, despite a milieu of competing endogenous signals and repulsive barriers. For complete details on the use and execution of this protocol, please refer to Harris et al. (2020).
format Online
Article
Text
id pubmed-8605397
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86053972021-11-26 Optogenetic axon guidance in embryonic zebrafish Harris, James M. Yu-Der Wang, Andy Arlotta, Paola STAR Protoc Protocol Axons form the long-range connections of biological neuronal networks, which are built through the developmental process of axon guidance. Here, we describe a protocol to precisely and non-invasively control axonal growth trajectories in live zebrafish embryos using focal light activation of a photoactivatable Rac1. We outline techniques for photostimulation, time-lapse imaging, and immunohistochemistry. These approaches enable engineering of long-range axonal circuitry or repair of defective circuits in living zebrafish, despite a milieu of competing endogenous signals and repulsive barriers. For complete details on the use and execution of this protocol, please refer to Harris et al. (2020). Elsevier 2021-11-15 /pmc/articles/PMC8605397/ /pubmed/34841275 http://dx.doi.org/10.1016/j.xpro.2021.100947 Text en © 2021. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Harris, James M.
Yu-Der Wang, Andy
Arlotta, Paola
Optogenetic axon guidance in embryonic zebrafish
title Optogenetic axon guidance in embryonic zebrafish
title_full Optogenetic axon guidance in embryonic zebrafish
title_fullStr Optogenetic axon guidance in embryonic zebrafish
title_full_unstemmed Optogenetic axon guidance in embryonic zebrafish
title_short Optogenetic axon guidance in embryonic zebrafish
title_sort optogenetic axon guidance in embryonic zebrafish
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605397/
https://www.ncbi.nlm.nih.gov/pubmed/34841275
http://dx.doi.org/10.1016/j.xpro.2021.100947
work_keys_str_mv AT harrisjamesm optogeneticaxonguidanceinembryoniczebrafish
AT yuderwangandy optogeneticaxonguidanceinembryoniczebrafish
AT arlottapaola optogeneticaxonguidanceinembryoniczebrafish