Cargando…

Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding

Many applications work by processing either small or big data, including sensitive and confidential ones, through computer networks like cloud computing. However, many systems are public and may not provide enough security mechanisms. Meanwhile, once the data are compromised, the security and privac...

Descripción completa

Detalles Bibliográficos
Autores principales: Samudra, Yoga, Ahmad, Tohari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605434/
https://www.ncbi.nlm.nih.gov/pubmed/34841104
http://dx.doi.org/10.1016/j.heliyon.2021.e08381
_version_ 1784602177256292352
author Samudra, Yoga
Ahmad, Tohari
author_facet Samudra, Yoga
Ahmad, Tohari
author_sort Samudra, Yoga
collection PubMed
description Many applications work by processing either small or big data, including sensitive and confidential ones, through computer networks like cloud computing. However, many systems are public and may not provide enough security mechanisms. Meanwhile, once the data are compromised, the security and privacy of the users will suffer from serious problems. Therefore, security protection is much required in various aspects, and one of how it is done is by embedding the data (payload) in another form of data (cover) such as audio. However, the existing methods do not provide enough space to accommodate the payload, so bigger data can not be taken; the quality of the respective generated data is relatively low, making it much different from its corresponding cover. This research works on these problems by improving a prediction error expansion-based algorithm and designing a mirroring embedded sample scheme. Here, a processed audio sample is forced to be as close as possible to the original one. The experimental results show that this proposed method produces a higher quality of stego data considering the size of the payloads. It achieves more than 100 dB, which is higher than that of the compared algorithms. Additionally, this proposed method is reversible, which means that both the original payload and the audio cover can be fully reconstructed.
format Online
Article
Text
id pubmed-8605434
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86054342021-11-26 Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding Samudra, Yoga Ahmad, Tohari Heliyon Research Article Many applications work by processing either small or big data, including sensitive and confidential ones, through computer networks like cloud computing. However, many systems are public and may not provide enough security mechanisms. Meanwhile, once the data are compromised, the security and privacy of the users will suffer from serious problems. Therefore, security protection is much required in various aspects, and one of how it is done is by embedding the data (payload) in another form of data (cover) such as audio. However, the existing methods do not provide enough space to accommodate the payload, so bigger data can not be taken; the quality of the respective generated data is relatively low, making it much different from its corresponding cover. This research works on these problems by improving a prediction error expansion-based algorithm and designing a mirroring embedded sample scheme. Here, a processed audio sample is forced to be as close as possible to the original one. The experimental results show that this proposed method produces a higher quality of stego data considering the size of the payloads. It achieves more than 100 dB, which is higher than that of the compared algorithms. Additionally, this proposed method is reversible, which means that both the original payload and the audio cover can be fully reconstructed. Elsevier 2021-11-16 /pmc/articles/PMC8605434/ /pubmed/34841104 http://dx.doi.org/10.1016/j.heliyon.2021.e08381 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Samudra, Yoga
Ahmad, Tohari
Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding
title Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding
title_full Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding
title_fullStr Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding
title_full_unstemmed Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding
title_short Improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding
title_sort improved prediction error expansion and mirroring embedded samples for enhancing reversible audio data hiding
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605434/
https://www.ncbi.nlm.nih.gov/pubmed/34841104
http://dx.doi.org/10.1016/j.heliyon.2021.e08381
work_keys_str_mv AT samudrayoga improvedpredictionerrorexpansionandmirroringembeddedsamplesforenhancingreversibleaudiodatahiding
AT ahmadtohari improvedpredictionerrorexpansionandmirroringembeddedsamplesforenhancingreversibleaudiodatahiding