Cargando…
Atomically precise silver clusterzymes protect mice from radiation damages
BACKGROUND: As we know, radiotherapy plays an irreplaceable role in the clinical management on solid tumors. However, due to the non-specific killing effects of ionizing radiation, normal tissues damages would be almost simultaneous inevitably. Therefore, ideal radioprotective agents with high effic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605545/ https://www.ncbi.nlm.nih.gov/pubmed/34798888 http://dx.doi.org/10.1186/s12951-021-01054-5 |
Sumario: | BACKGROUND: As we know, radiotherapy plays an irreplaceable role in the clinical management on solid tumors. However, due to the non-specific killing effects of ionizing radiation, normal tissues damages would be almost simultaneous inevitably. Therefore, ideal radioprotective agents with high efficiency and low toxicity are always desirable. In this work, atomically precise Ag(14) clusterzymes were developed, and their applications in radioprotection were studied in vitro and in vivo for the first time. METHODS: The ultra-small glutathione supported Ag(14) clusterzymes were synthesized by convenient sodium borohydride (NaBH(4)) reduction of thiolate-Ag (I) complexes and then they were purified by desalting columns. The enzyme-like activity and antioxidant capacity of Ag(14) clusterzymes have been tested by various commercial kits, salicylic acid method and electron spin resonance (ESR). Next, they were incubated with L929 cells to evaluate whether they could increase cell viability after γ-ray irradiation. And then Ag(14) clusterzymes were intravenously injected into C57 mice before 7 Gy whole-body γ-ray irradiation to evaluate the radioprotection effects in vivo. At last, the in vivo toxicities of Ag(14) clusterzymes were evaluated through biodistribution test, hematological details, serum biochemical indexes and histological test in female Balb/c mice with intravenous injection of Ag(14) clusterzymes. RESULTS: Our studies suggested atomically precise Ag(14) clusterzymes were potential radioprotectants. Ag(14) clusterzymes exhibited unique superoxide dismutase (SOD)-like activity, strong anti-oxidative abilities, especially on •OH scavenging. The Ag(14) clusterzymes could effectively improve cell viability through eliminating ROS and prevent DNA damages in cells dealt with γ-ray irradiation. In vivo experiments showed that Ag(14) clusterzymes could improve the irradiated mice survival rate by protecting hematological systems and repairing tissue oxidative stress damage generated by γ-ray irradiation. In addition, bio-distribution and toxicological experiments demonstrated that the ultrasmall Ag(14) clusterzymes could be excreted quickly from the body by renal clearance and negligible toxicological responses were observed in mice up to 30 days. CONCLUSION: In summary, atomically precise, ultrasmall and water soluble Ag(14) clusterzymes with SOD-like activity were successfully developed and proved to be effective both in vitro and in vivo for radioprotection. Furthermore, with atomically precise molecular structure, Ag(14) clusterzymes, on aspect of the catalytic and optical properties, may be improved by structure optimization on atom-scale level for other applications in disease diagnosis and treatment. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-021-01054-5. |
---|