Cargando…
Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study
PURPOSE: To investigate the predictive performance of machine learning-based CT radiomics for differentiating between low- and high-nuclear grade of clear cell renal cell carcinomas (CCRCCs). METHODS: This retrospective study enrolled 406 patients with pathologically confirmed low- and high-nuclear...
Autores principales: | Xv, Yingjie, Lv, Fajin, Guo, Haoming, Zhou, Xiang, Tan, Hao, Xiao, Mingzhao, Zheng, Yineng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8605949/ https://www.ncbi.nlm.nih.gov/pubmed/34800179 http://dx.doi.org/10.1186/s13244-021-01107-1 |
Ejemplares similares
-
A CT-Based Radiomics Nomogram Integrated With Clinic-Radiological Features for Preoperatively Predicting WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma
por: Xv, Yingjie, et al.
Publicado: (2021) -
Validity of a multiphase CT-based radiomics model in predicting the Leibovich risk groups for localized clear cell renal cell carcinoma: an exploratory study
por: Liu, Huayun, et al.
Publicado: (2023) -
Predicting the WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma Through CT-Based Tumoral and Peritumoral Radiomics
por: Ma, Yanqing, et al.
Publicado: (2022) -
Multiphase CT radiomics nomogram for preoperatively predicting the WHO/ISUP nuclear grade of small (< 4 cm) clear cell renal cell carcinoma
por: Gao, Yankun, et al.
Publicado: (2023) -
Preoperative Predicting the WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma by Computed Tomography-Based Radiomics Features
por: Moldovanu, Claudia-Gabriela, et al.
Publicado: (2020)