Cargando…

Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network

Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Lichtenegger, Antonia, Salas, Matthias, Sing, Alexander, Duelk, Marcus, Licandro, Roxane, Gesperger, Johanna, Baumann, Bernhard, Drexler, Wolfgang, Leitgeb, Rainer A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606123/
https://www.ncbi.nlm.nih.gov/pubmed/34858680
http://dx.doi.org/10.1364/BOE.435124
_version_ 1784602286589214720
author Lichtenegger, Antonia
Salas, Matthias
Sing, Alexander
Duelk, Marcus
Licandro, Roxane
Gesperger, Johanna
Baumann, Bernhard
Drexler, Wolfgang
Leitgeb, Rainer A.
author_facet Lichtenegger, Antonia
Salas, Matthias
Sing, Alexander
Duelk, Marcus
Licandro, Roxane
Gesperger, Johanna
Baumann, Bernhard
Drexler, Wolfgang
Leitgeb, Rainer A.
author_sort Lichtenegger, Antonia
collection PubMed
description Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system.
format Online
Article
Text
id pubmed-8606123
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-86061232021-12-01 Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network Lichtenegger, Antonia Salas, Matthias Sing, Alexander Duelk, Marcus Licandro, Roxane Gesperger, Johanna Baumann, Bernhard Drexler, Wolfgang Leitgeb, Rainer A. Biomed Opt Express Article Achieving high resolution in optical coherence tomography typically requires the continuous extension of the spectral bandwidth of the light source. This work demonstrates an alternative approach: combining two discrete spectral windows located in the visible spectrum with a trained conditional generative adversarial network (cGAN) to reconstruct a high-resolution image equivalent to that generated using a continuous spectral band. The cGAN was trained using OCT image pairs acquired with the continuous and discontinuous visible range spectra to learn the relation between low- and high-resolution data. The reconstruction performance was tested using 6000 B-scans of a layered phantom, micro-beads and ex-vivo mouse ear tissue. The resultant cGAN-generated images demonstrate an image quality and axial resolution which approaches that of the high-resolution system. Optical Society of America 2021-10-07 /pmc/articles/PMC8606123/ /pubmed/34858680 http://dx.doi.org/10.1364/BOE.435124 Text en Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Lichtenegger, Antonia
Salas, Matthias
Sing, Alexander
Duelk, Marcus
Licandro, Roxane
Gesperger, Johanna
Baumann, Bernhard
Drexler, Wolfgang
Leitgeb, Rainer A.
Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
title Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
title_full Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
title_fullStr Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
title_full_unstemmed Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
title_short Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
title_sort reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606123/
https://www.ncbi.nlm.nih.gov/pubmed/34858680
http://dx.doi.org/10.1364/BOE.435124
work_keys_str_mv AT lichteneggerantonia reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT salasmatthias reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT singalexander reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT duelkmarcus reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT licandroroxane reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT gespergerjohanna reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT baumannbernhard reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT drexlerwolfgang reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork
AT leitgebrainera reconstructionofvisiblelightopticalcoherencetomographyimagesretrievedfromdiscontinuousspectraldatausingaconditionalgenerativeadversarialnetwork