Cargando…

Jasmonates promote enhanced production of bioactive caffeoylquinic acid derivative in Eclipta prostrata (L.) L. hairy roots

Eclipta prostrata (L.) L. is widely used in traditional medicine for treatment of hepatitis, poisoning from snake bites and viral infections. Pharmacological studies confirmed its antioxidant, anti-inflammatory and anticancer activities. The efficacy of E. prostrata (L.) L. extracts has been correla...

Descripción completa

Detalles Bibliográficos
Autores principales: Maciel, Geveraldo, Lopes, Adriana Aparecida, Cantrell, Charles L., de Castro França, Suzelei, Bertoni, Bianca Waleria, Lourenço, Miriam Verginia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606271/
https://www.ncbi.nlm.nih.gov/pubmed/34840370
http://dx.doi.org/10.1007/s11240-021-02201-4
Descripción
Sumario:Eclipta prostrata (L.) L. is widely used in traditional medicine for treatment of hepatitis, poisoning from snake bites and viral infections. Pharmacological studies confirmed its antioxidant, anti-inflammatory and anticancer activities. The efficacy of E. prostrata (L.) L. extracts has been correlated to phenylpropanoids such as flavonoids, coumestans and caffeoylquinic acid derivatives. In this work, the production of wedelolactone, demethylwedelolactone and 3,5-di-O-caffeoylquinic acid (3,5-diCQA) in hairy root cultures of E. prostrata (L.) L. C19 clone was increased after addition of eliciting agents jasmonic acid (JA) or methyl jasmonate (MeJA) at multiple concentrations. Cultures elicited with 100 μM of JA saw a 5.2 fold increase in wedelolactone (from 0.72 to 3.72 mg/g d.w.), a 1.6 fold increase in demethylwedelolactone (from 5.54 to 9.04 mg/g d.w.) and a 2.47 fold increase in 3,5-diCQA (from 18.08 to 44.71 mg/g d.w.). Obtained data validate the potential of E. prostrata (L.) L. hairy root cultures as a production system of wedelolactone, demethylwedelolactone and especially 3,5-diCQA, which has recently been reported to possess activity against coronavirus disease (Covid-19) by in silico computational studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11240-021-02201-4.