Cargando…
Rule-Based Models for Risk Estimation and Analysis of In-hospital Mortality in Emergency and Critical Care
We propose a novel method that uses associative classification and odds ratios to predict in-hospital mortality in emergency and critical care. Manual mortality risk scores have previously been used to assess the care needed for each patient and their need for palliative measures. Automated approach...
Autores principales: | Haas, Oliver, Maier, Andreas, Rothgang, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606583/ https://www.ncbi.nlm.nih.gov/pubmed/34820408 http://dx.doi.org/10.3389/fmed.2021.785711 |
Ejemplares similares
-
Machine Learning-Based HIV Risk Estimation Using Incidence Rate Ratios
por: Haas, Oliver, et al.
Publicado: (2021) -
Predicting Anxiety in Routine Palliative Care Using Bayesian-Inspired Association Rule Mining
por: Haas, Oliver, et al.
Publicado: (2021) -
Automated Protocoling for MRI Exams—Challenges and Solutions
por: Denck, Jonas, et al.
Publicado: (2022) -
Selection bias in estimating the relationship between prolonged ED boarding and mortality in emergency critical care patients
por: Gardner, Kevin, et al.
Publicado: (2022) -
Automating Time-Consuming and Error-Prone Manual Nursing Management Documentation Processes
por: Haas, Oliver, et al.
Publicado: (2021)