Cargando…
Application of machine learning to predict the outcome of pediatric traumatic brain injury
PURPOSE: Traumatic brain injury (TBI) generally causes mortality and disability, particularly in children. Machine learning (ML) is a computer algorithm, applied as a clinical prediction tool. The present study aims to assess the predictability of ML for the functional outcomes of pediatric TBI. MET...
Autores principales: | Tunthanathip, Thara, Oearsakul, Thakul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606603/ https://www.ncbi.nlm.nih.gov/pubmed/34284922 http://dx.doi.org/10.1016/j.cjtee.2021.06.003 |
Ejemplares similares
-
Development of a nomogram to predict the outcome of moderate or severe pediatric traumatic brain injury
por: Oearsakul, Thakul, et al.
Publicado: (2022) -
Predictive Factors of Survival and 6-Month Favorable Outcome of Very Severe Head Trauma Patients; a Historical Cohort Study
por: Vathanalaoha, Karin, et al.
Publicado: (2017) -
Predicting the Health-related Quality of Life in Patients Following Traumatic Brain Injury
por: Tunthanathip, Thara, et al.
Publicado: (2021) -
Economic impact of a machine learning-based strategy for preparation of blood products in brain tumor surgery
por: Tunthanathip, Thara, et al.
Publicado: (2022) -
Morphometry of the C2 Pedicle and Lamina in Thai Patients
por: Yuwakosol, Pakorn, et al.
Publicado: (2020)