Cargando…
Hybrid Clustering of Single-Cell Gene Expression and Spatial Information via Integrated NMF and K-Means
Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integratio...
Autores principales: | Oh, Sooyoun, Park, Haesun, Zhang, Xiuwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606648/ https://www.ncbi.nlm.nih.gov/pubmed/34819947 http://dx.doi.org/10.3389/fgene.2021.763263 |
Ejemplares similares
-
Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm
por: Chen, Liang, et al.
Publicado: (2020) -
Resolving single-cell heterogeneity from hundreds of thousands of cells through sequential hybrid clustering and NMF
por: Venkatasubramanian, Meenakshi, et al.
Publicado: (2020) -
Rank-Two NMF Clustering for Glioblastoma Characterization
por: Bougacha, Aymen, et al.
Publicado: (2018) -
Identification of the methotrexate resistance-related diagnostic markers in osteosarcoma via adaptive total variation netNMF and multi-omics datasets
por: Jiang, Zhihan, et al.
Publicado: (2023) -
SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
por: Elosua-Bayes, Marc, et al.
Publicado: (2021)