Cargando…
Colorectal Cancer Detected by Machine Learning Models Using Conventional Laboratory Test Data
Background: Current diagnostic methods for colorectal cancer (CRC) are colonoscopy and sigmoidoscopy, which are invasive and complex procedures with possible complications. This study aimed to determine models for CRC identification that involve minimally invasive, affordable, portable, and accurate...
Autores principales: | Li, Hui, Lin, Jianmei, Xiao, Yanhong, Zheng, Wenwen, Zhao, Lu, Yang, Xiangling, Zhong, Minsheng, Liu, Huanliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606732/ https://www.ncbi.nlm.nih.gov/pubmed/34806496 http://dx.doi.org/10.1177/15330338211058352 |
Ejemplares similares
-
Mood detection and prediction using conventional machine learning techniques on COVID19 data
por: Bhattacharya, Subhayan, et al.
Publicado: (2022) -
Potential roles of serum ATPase and AMPase in predicting diagnosis of colorectal cancer patients
por: Shi, Mengchen, et al.
Publicado: (2022) -
Improved diagnostic value by combining plasma PON1 level with tumor biomarkers in Colorectal Cancer patients
por: Zhang, Jingdan, et al.
Publicado: (2020) -
Jun-APOE-LRP1 axis promotes tumor metastasis in colorectal cancer
por: He, Lingyuan, et al.
Publicado: (2023) -
Machine Learning in Prediction of Bladder Cancer on Clinical Laboratory Data
por: Tsai, I-Jung, et al.
Publicado: (2022)