Cargando…
A Machine Learning Model to Predict Intravenous Immunoglobulin-Resistant Kawasaki Disease Patients: A Retrospective Study Based on the Chongqing Population
Objective: We explored the risk factors for intravenous immunoglobulin (IVIG) resistance in children with Kawasaki disease (KD) and constructed a prediction model based on machine learning algorithms. Methods: A retrospective study including 1,398 KD patients hospitalized in 7 affiliated hospitals o...
Autores principales: | Liu, Jie, Zhang, Jian, Huang, Haodong, Wang, Yunting, Zhang, Zuyue, Ma, Yunfeng, He, Xiangqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606736/ https://www.ncbi.nlm.nih.gov/pubmed/34820343 http://dx.doi.org/10.3389/fped.2021.756095 |
Ejemplares similares
-
Comparison of Machine Learning Models for Prediction of Initial Intravenous Immunoglobulin Resistance in Children With Kawasaki Disease
por: Kuniyoshi, Yasutaka, et al.
Publicado: (2020) -
Nomogram to predict risk of resistance to intravenous immunoglobulin in children hospitalized with Kawasaki disease in Eastern China
por: Huang, Hongbiao, et al.
Publicado: (2022) -
Hemolysis From Intravenous Immunoglobulin in Obese Patients With Kawasaki Disease
por: Van Anh, Khanh-Van Y., et al.
Publicado: (2020) -
Neutrophil-to-Lymphocyte Ratio Predicts Intravenous Immunoglobulin-Resistance in Infants Under 12-Months Old With Kawasaki Disease
por: Chen, Yongbing, et al.
Publicado: (2019) -
Risk Factors for Resistance to Intravenous Immunoglobulin Treatment and Coronary Artery Abnormalities in a Chinese Pediatric Population With Kawasaki Disease: A Retrospective Cohort Study
por: Liu, Jie, et al.
Publicado: (2022)