Cargando…
Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality
Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a conti...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606889/ https://www.ncbi.nlm.nih.gov/pubmed/34819939 http://dx.doi.org/10.3389/fpls.2021.748273 |
_version_ | 1784602434552725504 |
---|---|
author | Lee, Choonseok Chung, Chong-Tae Hong, Woo-Jong Lee, Yang-Seok Lee, Jong-Hee Koh, Hee-Jong Jung, Ki-Hong |
author_facet | Lee, Choonseok Chung, Chong-Tae Hong, Woo-Jong Lee, Yang-Seok Lee, Jong-Hee Koh, Hee-Jong Jung, Ki-Hong |
author_sort | Lee, Choonseok |
collection | PubMed |
description | Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a continuous increase in salt concentration. Here, we investigated the relationship between the decrease in seed quality and the transcriptional changes that occur in the developing rice seeds under salt stress. Compared to cultivation on normal land, the japonica rice cultivar, Samgwang, grown on reclaimed land showed a greatly increased accumulation of minerals, including sodium, magnesium, potassium, and sulfur, in seeds and a reduced yield, delayed heading, decreased thousand grain weight, and decreased palatability and amylose content. Samgwang showed phenotypical sensitivity to salt stress in the developing seeds. Using RNA-seq technology, we therefore carried out a comparative transcriptome analysis of the developing seeds grown on reclaimed and normal lands. In the biological process category, gene ontology enrichment analysis revealed that the upregulated genes were closely associated with the metabolism of biomolecules, including amino acids, carboxylic acid, lignin, trehalose, polysaccharide, and chitin, and to stress responses. MapMan analysis revealed the involvement of upregulated genes in the biosynthetic pathways of abscisic acid and melatonin and the relationship of trehalose, raffinose, and maltose with osmotic stress. Interestingly, many seed storage protein genes encoding glutelins and prolamins were upregulated in the developing seeds under salt stress, indicating the negative effect of the increase of storage proteins on palatability. Transcription factors upregulated in the developing seeds under salt stress included, in particular, bHLH, MYB, zinc finger, and heat shock factor, which could act as potential targets for the manipulation of seed quality under salt stress. Our study aims to develop a useful reference for elucidating the relationship between seed response mechanisms and decreased seed quality under salt stress, providing potential strategies for the improvement of seed quality under salt stress. |
format | Online Article Text |
id | pubmed-8606889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86068892021-11-23 Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality Lee, Choonseok Chung, Chong-Tae Hong, Woo-Jong Lee, Yang-Seok Lee, Jong-Hee Koh, Hee-Jong Jung, Ki-Hong Front Plant Sci Plant Science Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a continuous increase in salt concentration. Here, we investigated the relationship between the decrease in seed quality and the transcriptional changes that occur in the developing rice seeds under salt stress. Compared to cultivation on normal land, the japonica rice cultivar, Samgwang, grown on reclaimed land showed a greatly increased accumulation of minerals, including sodium, magnesium, potassium, and sulfur, in seeds and a reduced yield, delayed heading, decreased thousand grain weight, and decreased palatability and amylose content. Samgwang showed phenotypical sensitivity to salt stress in the developing seeds. Using RNA-seq technology, we therefore carried out a comparative transcriptome analysis of the developing seeds grown on reclaimed and normal lands. In the biological process category, gene ontology enrichment analysis revealed that the upregulated genes were closely associated with the metabolism of biomolecules, including amino acids, carboxylic acid, lignin, trehalose, polysaccharide, and chitin, and to stress responses. MapMan analysis revealed the involvement of upregulated genes in the biosynthetic pathways of abscisic acid and melatonin and the relationship of trehalose, raffinose, and maltose with osmotic stress. Interestingly, many seed storage protein genes encoding glutelins and prolamins were upregulated in the developing seeds under salt stress, indicating the negative effect of the increase of storage proteins on palatability. Transcription factors upregulated in the developing seeds under salt stress included, in particular, bHLH, MYB, zinc finger, and heat shock factor, which could act as potential targets for the manipulation of seed quality under salt stress. Our study aims to develop a useful reference for elucidating the relationship between seed response mechanisms and decreased seed quality under salt stress, providing potential strategies for the improvement of seed quality under salt stress. Frontiers Media S.A. 2021-11-08 /pmc/articles/PMC8606889/ /pubmed/34819939 http://dx.doi.org/10.3389/fpls.2021.748273 Text en Copyright © 2021 Lee, Chung, Hong, Lee, Lee, Koh and Jung. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Lee, Choonseok Chung, Chong-Tae Hong, Woo-Jong Lee, Yang-Seok Lee, Jong-Hee Koh, Hee-Jong Jung, Ki-Hong Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality |
title | Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality |
title_full | Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality |
title_fullStr | Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality |
title_full_unstemmed | Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality |
title_short | Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality |
title_sort | transcriptional changes in the developing rice seeds under salt stress suggest targets for manipulating seed quality |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606889/ https://www.ncbi.nlm.nih.gov/pubmed/34819939 http://dx.doi.org/10.3389/fpls.2021.748273 |
work_keys_str_mv | AT leechoonseok transcriptionalchangesinthedevelopingriceseedsundersaltstresssuggesttargetsformanipulatingseedquality AT chungchongtae transcriptionalchangesinthedevelopingriceseedsundersaltstresssuggesttargetsformanipulatingseedquality AT hongwoojong transcriptionalchangesinthedevelopingriceseedsundersaltstresssuggesttargetsformanipulatingseedquality AT leeyangseok transcriptionalchangesinthedevelopingriceseedsundersaltstresssuggesttargetsformanipulatingseedquality AT leejonghee transcriptionalchangesinthedevelopingriceseedsundersaltstresssuggesttargetsformanipulatingseedquality AT kohheejong transcriptionalchangesinthedevelopingriceseedsundersaltstresssuggesttargetsformanipulatingseedquality AT jungkihong transcriptionalchangesinthedevelopingriceseedsundersaltstresssuggesttargetsformanipulatingseedquality |