Cargando…

Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization

Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage, unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we combine clinical, radiological, and genomics data in supervised machine-learning mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Boldanova, Tuyana, Fucile, Geoffrey, Vosshenrich, Jan, Suslov, Aleksei, Ercan, Caner, Coto-Llerena, Mairene, Terracciano, Luigi M., Zech, Christoph J., Boll, Daniel T., Wieland, Stefan, Heim, Markus H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606904/
https://www.ncbi.nlm.nih.gov/pubmed/34841291
http://dx.doi.org/10.1016/j.xcrm.2021.100444
_version_ 1784602438292996096
author Boldanova, Tuyana
Fucile, Geoffrey
Vosshenrich, Jan
Suslov, Aleksei
Ercan, Caner
Coto-Llerena, Mairene
Terracciano, Luigi M.
Zech, Christoph J.
Boll, Daniel T.
Wieland, Stefan
Heim, Markus H.
author_facet Boldanova, Tuyana
Fucile, Geoffrey
Vosshenrich, Jan
Suslov, Aleksei
Ercan, Caner
Coto-Llerena, Mairene
Terracciano, Luigi M.
Zech, Christoph J.
Boll, Daniel T.
Wieland, Stefan
Heim, Markus H.
author_sort Boldanova, Tuyana
collection PubMed
description Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage, unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we combine clinical, radiological, and genomics data in supervised machine-learning models toward the development of a clinically applicable predictive classifier of response to TACE in HCC patients. Our study consists of a discovery cohort of 33 tumors through which we identify predictive biomarkers, which are confirmed in a validation cohort. We find that radiological assessment of tumor area and several transcriptomic signatures, primarily the expression of FAM111B and HPRT1, are most predictive of response to TACE. Logistic regression decision support models consisting of tumor area and RNA-seq gene expression estimates for FAM111B and HPRT1 yield a predictive accuracy of ∼90%. Reverse transcription droplet digital PCR (RT-ddPCR) confirms these genes in combination with tumor area as a predictive classifier for response to TACE.
format Online
Article
Text
id pubmed-8606904
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86069042021-11-26 Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization Boldanova, Tuyana Fucile, Geoffrey Vosshenrich, Jan Suslov, Aleksei Ercan, Caner Coto-Llerena, Mairene Terracciano, Luigi M. Zech, Christoph J. Boll, Daniel T. Wieland, Stefan Heim, Markus H. Cell Rep Med Report Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage, unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we combine clinical, radiological, and genomics data in supervised machine-learning models toward the development of a clinically applicable predictive classifier of response to TACE in HCC patients. Our study consists of a discovery cohort of 33 tumors through which we identify predictive biomarkers, which are confirmed in a validation cohort. We find that radiological assessment of tumor area and several transcriptomic signatures, primarily the expression of FAM111B and HPRT1, are most predictive of response to TACE. Logistic regression decision support models consisting of tumor area and RNA-seq gene expression estimates for FAM111B and HPRT1 yield a predictive accuracy of ∼90%. Reverse transcription droplet digital PCR (RT-ddPCR) confirms these genes in combination with tumor area as a predictive classifier for response to TACE. Elsevier 2021-11-16 /pmc/articles/PMC8606904/ /pubmed/34841291 http://dx.doi.org/10.1016/j.xcrm.2021.100444 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Report
Boldanova, Tuyana
Fucile, Geoffrey
Vosshenrich, Jan
Suslov, Aleksei
Ercan, Caner
Coto-Llerena, Mairene
Terracciano, Luigi M.
Zech, Christoph J.
Boll, Daniel T.
Wieland, Stefan
Heim, Markus H.
Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization
title Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization
title_full Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization
title_fullStr Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization
title_full_unstemmed Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization
title_short Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization
title_sort supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606904/
https://www.ncbi.nlm.nih.gov/pubmed/34841291
http://dx.doi.org/10.1016/j.xcrm.2021.100444
work_keys_str_mv AT boldanovatuyana supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT fucilegeoffrey supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT vosshenrichjan supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT suslovaleksei supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT ercancaner supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT cotollerenamairene supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT terraccianoluigim supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT zechchristophj supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT bolldanielt supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT wielandstefan supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization
AT heimmarkush supervisedlearningbasedontumorimagingandbiopsytranscriptomicspredictsresponseofhepatocellularcarcinomatotransarterialchemoembolization