Cargando…
Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives
The emerging cryogenic electron microscopy (cryo-EM) has demonstrated its power and essential role in probing the beam-sensitive battery materials and delivering new insights. With the increasing interest in cryo-EM for battery materials and interfaces, herein we provide the strategies of obtaining...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607198/ https://www.ncbi.nlm.nih.gov/pubmed/34849466 http://dx.doi.org/10.1016/j.isci.2021.103402 |
Sumario: | The emerging cryogenic electron microscopy (cryo-EM) has demonstrated its power and essential role in probing the beam-sensitive battery materials and delivering new insights. With the increasing interest in cryo-EM for battery materials and interfaces, herein we provide the strategies of obtaining fresh and native structural information with minimal artifacts, including sample preparation, transferring, imaging, and data interpretation. We summarize the recent achievements enabled by cryo-EM and point out some unsolved/potential questions in terms of the bulk materials, solid-solid interface, and solid-liquid interfaces of batteries. Finally, we conclude with perspectives on the future developments and applications of cryo-EM in battery materials and interfaces. |
---|