Cargando…
Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations
In this study, we evaluate a coronal mass ejection (CME) arrival prediction tool that utilizes the wide‐angle observations made by STEREO's heliospheric imagers (HI). The unsurpassable advantage of these imagers is the possibility to observe the evolution and propagation of a CME from close to...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607470/ https://www.ncbi.nlm.nih.gov/pubmed/34853569 http://dx.doi.org/10.1029/2020SW002553 |
_version_ | 1784602570080124928 |
---|---|
author | Amerstorfer, Tanja Hinterreiter, Jürgen Reiss, Martin A. Möstl, Christian Davies, Jackie A. Bailey, Rachel L. Weiss, Andreas J. Dumbović, Mateja Bauer, Maike Amerstorfer, Ute V. Harrison, Richard A. |
author_facet | Amerstorfer, Tanja Hinterreiter, Jürgen Reiss, Martin A. Möstl, Christian Davies, Jackie A. Bailey, Rachel L. Weiss, Andreas J. Dumbović, Mateja Bauer, Maike Amerstorfer, Ute V. Harrison, Richard A. |
author_sort | Amerstorfer, Tanja |
collection | PubMed |
description | In this study, we evaluate a coronal mass ejection (CME) arrival prediction tool that utilizes the wide‐angle observations made by STEREO's heliospheric imagers (HI). The unsurpassable advantage of these imagers is the possibility to observe the evolution and propagation of a CME from close to the Sun out to 1 AU and beyond. We believe that by exploiting this capability, instead of relying on coronagraph observations only, it is possible to improve today's CME arrival time predictions. The ELlipse Evolution model based on HI observations (ELEvoHI) assumes that the CME frontal shape within the ecliptic plane is an ellipse and allows the CME to adjust to the ambient solar wind speed; that is, it is drag based. ELEvoHI is used to perform ensemble simulations by varying the CME frontal shape within given boundary conditions that are consistent with the observations made by HI. In this work, we evaluate different setups of the model by performing hindcasts for 15 well‐defined isolated CMEs that occurred when STEREO was near L4/5, between the end of 2008 and the beginning of 2011. In this way, we find a mean absolute error of between 6.2 ± 7.9 and 9.9 ± 13 hr depending on the model setup used. ELEvoHI is specified for using data from future space weather missions carrying HIs located at L5 or L1. It can also be used with near‐real‐time STEREO‐A HI beacon data to provide CME arrival predictions during the next ∼7 years when STEREO‐A is observing the Sun‐Earth space. |
format | Online Article Text |
id | pubmed-8607470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86074702021-11-29 Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations Amerstorfer, Tanja Hinterreiter, Jürgen Reiss, Martin A. Möstl, Christian Davies, Jackie A. Bailey, Rachel L. Weiss, Andreas J. Dumbović, Mateja Bauer, Maike Amerstorfer, Ute V. Harrison, Richard A. Space Weather Research Articles In this study, we evaluate a coronal mass ejection (CME) arrival prediction tool that utilizes the wide‐angle observations made by STEREO's heliospheric imagers (HI). The unsurpassable advantage of these imagers is the possibility to observe the evolution and propagation of a CME from close to the Sun out to 1 AU and beyond. We believe that by exploiting this capability, instead of relying on coronagraph observations only, it is possible to improve today's CME arrival time predictions. The ELlipse Evolution model based on HI observations (ELEvoHI) assumes that the CME frontal shape within the ecliptic plane is an ellipse and allows the CME to adjust to the ambient solar wind speed; that is, it is drag based. ELEvoHI is used to perform ensemble simulations by varying the CME frontal shape within given boundary conditions that are consistent with the observations made by HI. In this work, we evaluate different setups of the model by performing hindcasts for 15 well‐defined isolated CMEs that occurred when STEREO was near L4/5, between the end of 2008 and the beginning of 2011. In this way, we find a mean absolute error of between 6.2 ± 7.9 and 9.9 ± 13 hr depending on the model setup used. ELEvoHI is specified for using data from future space weather missions carrying HIs located at L5 or L1. It can also be used with near‐real‐time STEREO‐A HI beacon data to provide CME arrival predictions during the next ∼7 years when STEREO‐A is observing the Sun‐Earth space. John Wiley and Sons Inc. 2021-01-05 2021-01 /pmc/articles/PMC8607470/ /pubmed/34853569 http://dx.doi.org/10.1029/2020SW002553 Text en ©2020. The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Amerstorfer, Tanja Hinterreiter, Jürgen Reiss, Martin A. Möstl, Christian Davies, Jackie A. Bailey, Rachel L. Weiss, Andreas J. Dumbović, Mateja Bauer, Maike Amerstorfer, Ute V. Harrison, Richard A. Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations |
title | Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations |
title_full | Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations |
title_fullStr | Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations |
title_full_unstemmed | Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations |
title_short | Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations |
title_sort | evaluation of cme arrival prediction using ensemble modeling based on heliospheric imaging observations |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607470/ https://www.ncbi.nlm.nih.gov/pubmed/34853569 http://dx.doi.org/10.1029/2020SW002553 |
work_keys_str_mv | AT amerstorfertanja evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT hinterreiterjurgen evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT reissmartina evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT mostlchristian evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT daviesjackiea evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT baileyrachell evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT weissandreasj evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT dumbovicmateja evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT bauermaike evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT amerstorferutev evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations AT harrisonricharda evaluationofcmearrivalpredictionusingensemblemodelingbasedonheliosphericimagingobservations |