Cargando…
Improving random forest predictions in small datasets from two-phase sampling designs
BACKGROUND: While random forests are one of the most successful machine learning methods, it is necessary to optimize their performance for use with datasets resulting from a two-phase sampling design with a small number of cases—a common situation in biomedical studies, which often have rare outcom...
Autores principales: | Han, Sunwoo, Williamson, Brian D., Fong, Youyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607560/ https://www.ncbi.nlm.nih.gov/pubmed/34809631 http://dx.doi.org/10.1186/s12911-021-01688-3 |
Ejemplares similares
-
Optimizing Deep Learning-Based Segmentation of Densely Packed Cells using Cell Surface Markers
por: Han, Sunwoo, et al.
Publicado: (2023) -
Comparison of Random Forest and Gradient Boosting Machine Models for Predicting Demolition Waste Based on Small Datasets and Categorical Variables
por: Cha, Gi-Wook, et al.
Publicado: (2021) -
PlasForest: a homology-based random forest classifier for plasmid detection in genomic datasets
por: Pradier, Léa, et al.
Publicado: (2021) -
Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets
por: Cha, Gi-Wook, et al.
Publicado: (2020) -
The use of two-sample methods for Mendelian randomization analyses on single large datasets
por: Minelli, Cosetta, et al.
Publicado: (2021)