Cargando…
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets, networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentatio...
Autores principales: | Motamed, Saman, Rogalla, Patrik, Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8607740/ https://www.ncbi.nlm.nih.gov/pubmed/34841040 http://dx.doi.org/10.1016/j.imu.2021.100779 |
Ejemplares similares
-
RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray
por: Motamed, Saman, et al.
Publicado: (2021) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Propensity score synthetic augmentation matching using generative adversarial networks (PSSAM-GAN)
por: Ghosh, Shantanu, et al.
Publicado: (2021) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021)