Cargando…
Using genderize.io to infer the gender of first names: how to improve the accuracy of the inference
OBJECTIVE: We recently showed that genderize.io is not a sufficiently powerful gender detection tool due to a large number of nonclassifications. In the present study, we aimed to assess whether the accuracy of inference by genderize.io can be improved by manipulating the first names in the database...
Autor principal: | Sebo, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University Library System, University of Pittsburgh
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608220/ https://www.ncbi.nlm.nih.gov/pubmed/34858090 http://dx.doi.org/10.5195/jmla.2021.1252 |
Ejemplares similares
-
Erratum to “Performance of gender detection tools: a comparative study of name-to-gender inference services,” 2021;109(3):414–21 and “Using genderize.io to infer the gender of first names: how to improve the accuracy of the inference,” 2021;109(4):609–12.
por: Sebo, Paul
Publicado: (2022) -
Performance of gender detection tools: a comparative study of name-to-gender inference services
por: Sebo, Paul
Publicado: (2021) -
How accurate are gender detection tools in predicting the gender for Chinese names? A study with 20,000 given names in Pinyin format
por: Sebo, Paul
Publicado: (2022) -
Comparison and benchmark of name-to-gender inference services
por: Santamaría, Lucía, et al.
Publicado: (2018) -
Effects of Sample Selection Bias on the Accuracy of Population Structure and Ancestry Inference
por: Shringarpure, Suyash, et al.
Publicado: (2014)